Introduction:This study aimed to establish an animal model of open abdomen(OA)through temporary abdominal closure via different techniques.Methods:Adult male Sprague-Dawley rats were randomly divided into three groups...Introduction:This study aimed to establish an animal model of open abdomen(OA)through temporary abdominal closure via different techniques.Methods:Adult male Sprague-Dawley rats were randomly divided into three groups:group A(OA with polypropylene mesh alone);group B(OA with polypro-pylene mesh combined with a patch);and group C(OA with polypropylene mesh and a sutured patch).Vital signs,pathophysiological changes,and survival rates were closely monitored in the rats for 7 days after surgery.Abdominal X-rays and histopathological examinations were performed to assess abdominal organ changes and wound healing.Results:The results showed no significant difference in mortality rates among the three groups(p>0.05).However,rats in group B exhibited superior overall condi-tion,cleaner wounds,and a higher rate of wound healing compared to the other groups(p<0.05).Abdominal X-rays indicated that varying degrees of distal intestinal obstruction in all groups.Histopathological examinations revealed fibrous hyperpla-sia,inflammatory cell infiltration,neovascularization,and collagen deposition in all groups.Group B demonstrated enhanced granulation tissue generation,neovasculari-zation,and collagen deposition compared to the other groups(p<0.05).Conclusions:Polypropylene mesh combined with patches is the most suitable method for establishing an animal model of OA.This model successfully replicated the patho-logical and physiological changes in postoperative patients with OA,specifically the progress of abdominal skin wound healing.It provides a practical and reliable animal model for OA research.展开更多
Atomic clusters typically exhibit distinctive electronic structures and physicochemical properties.However,as the size decreases,their ability to adsorb and dissociate water also diminishes,thereby affecting chemical ...Atomic clusters typically exhibit distinctive electronic structures and physicochemical properties.However,as the size decreases,their ability to adsorb and dissociate water also diminishes,thereby affecting chemical reactions involving water molecules.Enhancing the adsorption and dissociation capabilities of atomic clusters towards water molecules and elucidating the mechanisms underlying their performance enhancement have become important research directions.Herein,employing the carrier-anchored strategy,Ru-O-Ru atomic clusters were prepared and displayed excellent activity and durability in the hydrogen evolution reaction.Specifically,the Ru-O-Ru atomic clusters exhibited only 86 mV overpotential at 100 mA·cm−^(2) and superior membrane-electrode-assembly activity than commercial Ru/C catalyst.Synchrotron radiation-based Fourier transform infrared spectroscopic measurements revealed that the modification of oxygen in Ru-O-Ru units promoted the reorientation of water molecules from a H-up orientation to H-down,therefore,enhanced the formation of strong hydrogen-bond network of interfacial water on the surface of Ru-O-Ru clusters,leading to enhanced adsorption and dissociation of water and accelerated Volmer step.Those findings provide a potential strategy and deep insights for the development of atomic clusters in electrocatalysts.展开更多
Heat generated by the quantum defect(QD)in optically pumped lasers can result in detrimental effects such as mode instability,frequency noise,and even catastrophic damage.Previously,we demonstrated that boson-peakbase...Heat generated by the quantum defect(QD)in optically pumped lasers can result in detrimental effects such as mode instability,frequency noise,and even catastrophic damage.Previously,we demonstrated that boson-peakbased Raman fiber lasers have great potential in low QD laser generation.But their power scalability and heat load characteristics have yet to be investigated.Here,we demonstrate a boson-peak-based Raman fiber amplifier(RFA)with 815 W output power and a QD of 1.3%.The low heat generation characteristics of this low QD RFA are demonstrated.Both experimental and simulation results show that at this power level,the heat load of the low QD RFA is significantly lower than that of the conventional RFA with a QD of 4.8%.Thanks to its low heat generation characteristics,the proposed phosphosilicate-fiber-based low QD RFA provides an effective solution for the intractable thermal issue in optically pumped lasers,which is of significance in reducing the laser’s noise,improving the laser’s stability and safety,and solving the challenge of heat removing.展开更多
Exploring the atomic interaction mechanisms of dense single-atom catalysts(SACs)is of great significance for their application in oxygen reduction reaction(ORR).However,the intrinsic mechanism of the site-distance eff...Exploring the atomic interaction mechanisms of dense single-atom catalysts(SACs)is of great significance for their application in oxygen reduction reaction(ORR).However,the intrinsic mechanism of the site-distance effect on the catalytic performance has been largely ignored.Here,we demonstrate the site-distance effect of Fe-Rh_(x)@NC catalysts in ORR theoretically and experimentally.Bader charge analysis reveals that the strong interaction between Fe and Rh atoms at a certain atomic distance(dFe-Rh)alters the catalytic electronic structure,facilitating the optimization of catalyst adsorption strength.Motivated by the theoretical calculations,we designed and synthesized the Fe-Rhx@NC catalysts through a spatial confinement strategy.The characterization results prove that the Fe-Rh_(2)@NC has the optimal d_(Fe-Rh),which improves its intrinsic ORR activity,providing a half wave potential of 0.91 V,higher than that of the commercial Pt/C(0.86 V).This study emphasizes the importance of determining the basic mechanism of the site-distance effect in dissimilar metal atoms catalysts,which is conducive to the design of efficient catalyst systems for practical applications.展开更多
Development of a high power fiber laser at special waveband,which is difficult to achieve by conventional rare-earth-doped fibers,is a significant challenge.One of the most common methods for achieving lasing at speci...Development of a high power fiber laser at special waveband,which is difficult to achieve by conventional rare-earth-doped fibers,is a significant challenge.One of the most common methods for achieving lasing at special wavelength is Raman conversion.Phosphorus-doped fiber(PDF),due to the phosphorus-related large frequency shift Raman peak at 40 THz,is a great choice for large frequency shift Raman conversion.Here,by adopting 150 m large mode area triple-clad PDF as Raman gain medium,and a novel wavelength-selective feedback mechanism to suppress the silica-related Raman emission,we build a high power cladding-pumped Raman fiber laser at 1.2μm waveband.A Raman signal with power up to 735.8 W at 1252.7 nm is obtained.To the best of our knowledge,this is the highest output power ever reported for fiber lasers at 1.2μm waveband.Moreover,by tuning the wavelength of the pump source,a tunable Raman output of more than 450 W over a wavelength range of 1240.6–1252.7 nm is demonstrated.This work proves PDF’s advantage in high power large frequency shift Raman conversion with a cladding pump scheme,thus providing a good solution for a high power laser source at special waveband.展开更多
A spectral programmable,continuous-wave mid-infrared(MIR)optical parametric oscillator(OPO),enabled by a self-developed high-power spectral tailorable fiber laser,was proposed and realized.While operating at a singlew...A spectral programmable,continuous-wave mid-infrared(MIR)optical parametric oscillator(OPO),enabled by a self-developed high-power spectral tailorable fiber laser,was proposed and realized.While operating at a singlewavelength,the maximum idler power reached 5.53 W at 3028 nm,with a corresponding pump-to-idler conversion efficiency of 14.7%.The wavelength number switchable output was available from one to three.The single idler was tunable in a range of 528 nm(2852–3380 nm).In a dual-wavelength operation,the interval between two idlers could be flexibly tuned for 470 nm(53–523 nm),and the intensity of each channel was controllable.Triplewavelength idler emission was realized,meanwhile exhibiting spectral custom-tailored characteristics.Furthermore,we balanced the parametric gain through the pre-modulating broadband multi-peak pump spectra,enabling a 10 d B bandwidth adjustment of the idler emission from 20 to 125 nm.This versatile mid-infrared laser,simultaneously featuring wide tuning,multi-wavelength operation,and broad bandwidth manipulation,has great application potential in composition detection,terahertz generation,and speckle-free imaging.展开更多
Increasing evidence demonstrates that mammals have different reactions to hypoxia with varied oxygen dynamic patterns.It takes~24 h for tri-gas incubator to achieve steady cell hypoxia,which fails to recapitulate ultr...Increasing evidence demonstrates that mammals have different reactions to hypoxia with varied oxygen dynamic patterns.It takes~24 h for tri-gas incubator to achieve steady cell hypoxia,which fails to recapitulate ultrafast oxygen dynamics of intestinal ischemia/reperfusion(IR)injury.Inspired from the structure of native intestinal villi,we engineered an intestinal organoid chip embedded with engineered artificial microvessels based on coaxial microfluidic technology by using pH-responsive ZIF-8/sodium alginate scaffold.The chip was featured on:(i)eight times the oxygen exchange efficiency compared with the conventional device,tri-gas incubator,(ii)implantation of intestinal organoid reproducing all types of intestinal epithelial cells,and(iii)bio-responsiveness to hypoxia and reoxygenation(HR)by presenting metabolism disorder,inflammatory reaction,and cell apoptosis.Strikingly,it was found for the first time that Olfactomedin 4(Olfm4)was the most significantly downregulated gene under a rapid HR condition by sequencing the RNA from the organoids.Mechanistically,OLFM4 played protective functions on HR-induced cell inflammation and tissue damage by inhibiting the NF-kappa B signaling activation,thus it could be used as a therapeutic target.Altogether,this study overcomes the issue of mismatched oxygen dynamics between in vitro and in vivo,and sets an example of next-generation multisysteminteractive organoid chip for finding precise therapeutic targets of IR injury.展开更多
In past decades,multi-wavelength lasers have attracted much attention due to their wide applications in many fields.In this paper,we demonstrate a multi-wavelength random fiber laser with customizable spectra enabled ...In past decades,multi-wavelength lasers have attracted much attention due to their wide applications in many fields.In this paper,we demonstrate a multi-wavelength random fiber laser with customizable spectra enabled by an acousto–optic tunable filter.The operating wavelength range can be tuned from 1114.5 to 1132.5 nm with a maximal output power of 5.55 W,and spectral channel tuning can also be realized with a maximal number of five.The effect of gain competition and the interaction between Raman gain and insertion loss are also analyzed.Furthermore,the output spectra can be ordered by radiating appropriate radio frequency signals to the acousto–optic tunable filter.This work may provide a reference for agile shape spectrum generation and promote multi-wavelength random fiber laser practicability in sensing,telecommunications,and precise spectroscopy.展开更多
The typical behavior of unsteady flow and force evolution in a number of applications,such as aero-elastics, gust-wing interaction, flapping flight and flight maneuvering, can be understood using the starting flow mod...The typical behavior of unsteady flow and force evolution in a number of applications,such as aero-elastics, gust-wing interaction, flapping flight and flight maneuvering, can be understood using the starting flow model. Starting flow model is obtained either by setting rapidly an angle of attack for a wing moving at constant speed, or by accelerating a wing to a constant speed while gaining an angle of attack. In the limiting case of impulsively starting flow, the wing is assumed to gain suddenly an angle of attack in an initially uniform flow. Theories have been developed for impulsively starting flow at small angle of attack long before and at large angle of attack only recently, especially for incompressible and supersonic flow. This paper intends to provide a state-of-art overview of the typical flow phenomena, force evolution characteristics and developed theories for impulsively starting flow at any angle of attack and for both lower speed flow(vortex dominated) and high speed flow(compressible wave dominated). This review also provides some new topics that deserve further studies.展开更多
Wagner problem is originally concerned with inviscid flow and unsteady force due to a small step motion,or attaining of a small angle of attack,of an airfoil in an initially uniform flow and has been studied recently ...Wagner problem is originally concerned with inviscid flow and unsteady force due to a small step motion,or attaining of a small angle of attack,of an airfoil in an initially uniform flow and has been studied recently for inviscid flow with large amplitude step motion.Here we propose to consider turbulent Wagner problem for a plate that is initially covered with a mixed laminarboundary layer on both sides and is set into step motion of small or large amplitude and in direction normal to the plate.The evolution of skin friction and transition region in time are examined numerically.It is found that transition region unexpectedly changes direction of movement for small amplitude of step motion while global transition or laminarization exists for large amplitude step motion.The significance of this study is twofold.First,the present study treated a new and interesting problem since it combines two problems of fundamental interests,one is Wagner problem and the other is boundary layer transition.Second,the present study appears to show that the pressure gradient normal to the airfoil and caused by discontinuous step motion may have subtle influence on transition and the mechanism of this influence deserves further studies.展开更多
In order to study the bearing performance of a new type of prefabricated subway station structure(PSSS),firstly,a three-dimensional finite element model of the PSSS was established to study the nonlinear mechanics and...In order to study the bearing performance of a new type of prefabricated subway station structure(PSSS),firstly,a three-dimensional finite element model of the PSSS was established to study the nonlinear mechanics and deformation performance.Secondly,the bearing mechanism of a PSSS was investigated in detail.Finally,the development law of damages to a thin-walled prefabricated component and the failure evolution mechanism of a PSSS were discussed.The results showed that this new type of the PSSS had good bearing capacity.The top arch structure was a three-hinged arch bearing system,and the enclosure structure and the substructure were respectively used as the horizontal and vertical support systems of the three-hinged arch structure to ensure the integrity and stability of the overall structure.Moreover,the tongue-and-groove joints could effectively transmit the internal force between the components and keep the components deformed in harmony.The rigidity degradation of the PSSS caused by the accumulation of damages to the spandrel,hance,arch foot,and enclosure structure was the main reason of its loss of bearing capacity.The existing thin-walled components design had significant advantages in weight reduction,concrete temperature control,components hoisting,transportation and assembly construction,which achieved a good balance between safety,usability and economy.展开更多
基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,Grant/Award Number:SJCX23_0092National Natural Science Foundation of China,Grant/Award Number:82270595Jiangsu Provincial Medical Innovation Center,Grant/Award Number:CXZX202217。
文摘Introduction:This study aimed to establish an animal model of open abdomen(OA)through temporary abdominal closure via different techniques.Methods:Adult male Sprague-Dawley rats were randomly divided into three groups:group A(OA with polypropylene mesh alone);group B(OA with polypro-pylene mesh combined with a patch);and group C(OA with polypropylene mesh and a sutured patch).Vital signs,pathophysiological changes,and survival rates were closely monitored in the rats for 7 days after surgery.Abdominal X-rays and histopathological examinations were performed to assess abdominal organ changes and wound healing.Results:The results showed no significant difference in mortality rates among the three groups(p>0.05).However,rats in group B exhibited superior overall condi-tion,cleaner wounds,and a higher rate of wound healing compared to the other groups(p<0.05).Abdominal X-rays indicated that varying degrees of distal intestinal obstruction in all groups.Histopathological examinations revealed fibrous hyperpla-sia,inflammatory cell infiltration,neovascularization,and collagen deposition in all groups.Group B demonstrated enhanced granulation tissue generation,neovasculari-zation,and collagen deposition compared to the other groups(p<0.05).Conclusions:Polypropylene mesh combined with patches is the most suitable method for establishing an animal model of OA.This model successfully replicated the patho-logical and physiological changes in postoperative patients with OA,specifically the progress of abdominal skin wound healing.It provides a practical and reliable animal model for OA research.
基金supported by the National Natural Science Foundation of China(Nos.12025505,22179125,and 12205304)the National Key R&D Program of China(No.2021YFA1600800)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0450200)the University of China Innovation Program of Anhui Province(No.GXXT-2020-053)the Youth Innovation Promotion Association CAS(No.2022458)the Fundamental Research Funds for the Central Universities(Nos.WK2060000038 and WK2310000113)the Fellowship of China Postdoctoral Science Foundation(No.2021TQ0319).
文摘Atomic clusters typically exhibit distinctive electronic structures and physicochemical properties.However,as the size decreases,their ability to adsorb and dissociate water also diminishes,thereby affecting chemical reactions involving water molecules.Enhancing the adsorption and dissociation capabilities of atomic clusters towards water molecules and elucidating the mechanisms underlying their performance enhancement have become important research directions.Herein,employing the carrier-anchored strategy,Ru-O-Ru atomic clusters were prepared and displayed excellent activity and durability in the hydrogen evolution reaction.Specifically,the Ru-O-Ru atomic clusters exhibited only 86 mV overpotential at 100 mA·cm−^(2) and superior membrane-electrode-assembly activity than commercial Ru/C catalyst.Synchrotron radiation-based Fourier transform infrared spectroscopic measurements revealed that the modification of oxygen in Ru-O-Ru units promoted the reorientation of water molecules from a H-up orientation to H-down,therefore,enhanced the formation of strong hydrogen-bond network of interfacial water on the surface of Ru-O-Ru clusters,leading to enhanced adsorption and dissociation of water and accelerated Volmer step.Those findings provide a potential strategy and deep insights for the development of atomic clusters in electrocatalysts.
基金National Postdoctoral Program for Innovative Talents(BX20190063)National Natural Science Foundation of China(61635005,61905284,62305391)。
文摘Heat generated by the quantum defect(QD)in optically pumped lasers can result in detrimental effects such as mode instability,frequency noise,and even catastrophic damage.Previously,we demonstrated that boson-peakbased Raman fiber lasers have great potential in low QD laser generation.But their power scalability and heat load characteristics have yet to be investigated.Here,we demonstrate a boson-peak-based Raman fiber amplifier(RFA)with 815 W output power and a QD of 1.3%.The low heat generation characteristics of this low QD RFA are demonstrated.Both experimental and simulation results show that at this power level,the heat load of the low QD RFA is significantly lower than that of the conventional RFA with a QD of 4.8%.Thanks to its low heat generation characteristics,the proposed phosphosilicate-fiber-based low QD RFA provides an effective solution for the intractable thermal issue in optically pumped lasers,which is of significance in reducing the laser’s noise,improving the laser’s stability and safety,and solving the challenge of heat removing.
基金supported by the National Key R&D Program of China(2021YFA1600800 and 2020YFA0710203)the National Natural Science Foundation of China(12025505,22002147,22179125 and 12205304)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0450200)the University of China Innovation Program of Anhui Province(GXXT-2020-053)the Youth Innovation Promotion Association CAS(2015366 and 2022458)the Fellowship of China Postdoctoral Science Foundation(2021TQ0319)。
文摘Exploring the atomic interaction mechanisms of dense single-atom catalysts(SACs)is of great significance for their application in oxygen reduction reaction(ORR).However,the intrinsic mechanism of the site-distance effect on the catalytic performance has been largely ignored.Here,we demonstrate the site-distance effect of Fe-Rh_(x)@NC catalysts in ORR theoretically and experimentally.Bader charge analysis reveals that the strong interaction between Fe and Rh atoms at a certain atomic distance(dFe-Rh)alters the catalytic electronic structure,facilitating the optimization of catalyst adsorption strength.Motivated by the theoretical calculations,we designed and synthesized the Fe-Rhx@NC catalysts through a spatial confinement strategy.The characterization results prove that the Fe-Rh_(2)@NC has the optimal d_(Fe-Rh),which improves its intrinsic ORR activity,providing a half wave potential of 0.91 V,higher than that of the commercial Pt/C(0.86 V).This study emphasizes the importance of determining the basic mechanism of the site-distance effect in dissimilar metal atoms catalysts,which is conducive to the design of efficient catalyst systems for practical applications.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.61635005,61905284,and 62305391)the National Postdoctoral Program for Innovative Talents(No.BX20190063).
文摘Development of a high power fiber laser at special waveband,which is difficult to achieve by conventional rare-earth-doped fibers,is a significant challenge.One of the most common methods for achieving lasing at special wavelength is Raman conversion.Phosphorus-doped fiber(PDF),due to the phosphorus-related large frequency shift Raman peak at 40 THz,is a great choice for large frequency shift Raman conversion.Here,by adopting 150 m large mode area triple-clad PDF as Raman gain medium,and a novel wavelength-selective feedback mechanism to suppress the silica-related Raman emission,we build a high power cladding-pumped Raman fiber laser at 1.2μm waveband.A Raman signal with power up to 735.8 W at 1252.7 nm is obtained.To the best of our knowledge,this is the highest output power ever reported for fiber lasers at 1.2μm waveband.Moreover,by tuning the wavelength of the pump source,a tunable Raman output of more than 450 W over a wavelength range of 1240.6–1252.7 nm is demonstrated.This work proves PDF’s advantage in high power large frequency shift Raman conversion with a cladding pump scheme,thus providing a good solution for a high power laser source at special waveband.
基金Project 2019-JCJQ(JJ-202)National Postdoctoral Program for Innovative Talents(BX20190063)+1 种基金Hunan Innovative Province Construction Project(2019RS3017)National Natural Science Foundation of China(61975236,62061136013,62035015)。
文摘A spectral programmable,continuous-wave mid-infrared(MIR)optical parametric oscillator(OPO),enabled by a self-developed high-power spectral tailorable fiber laser,was proposed and realized.While operating at a singlewavelength,the maximum idler power reached 5.53 W at 3028 nm,with a corresponding pump-to-idler conversion efficiency of 14.7%.The wavelength number switchable output was available from one to three.The single idler was tunable in a range of 528 nm(2852–3380 nm).In a dual-wavelength operation,the interval between two idlers could be flexibly tuned for 470 nm(53–523 nm),and the intensity of each channel was controllable.Triplewavelength idler emission was realized,meanwhile exhibiting spectral custom-tailored characteristics.Furthermore,we balanced the parametric gain through the pre-modulating broadband multi-peak pump spectra,enabling a 10 d B bandwidth adjustment of the idler emission from 20 to 125 nm.This versatile mid-infrared laser,simultaneously featuring wide tuning,multi-wavelength operation,and broad bandwidth manipulation,has great application potential in composition detection,terahertz generation,and speckle-free imaging.
基金the National Natural Science Foundation of China(82270595,82272237,82072223,32171402)the China Postdoctoral Science Foundation(BX20220393,2022M723891)+2 种基金the General Program of Medical Research from the Jiangsu Commission of Health(M2020052)the Jiangsu Key Research and Development Plan(BE2021727)Jiangsu Provincial Medical Innovation Center(CXZX202217).
文摘Increasing evidence demonstrates that mammals have different reactions to hypoxia with varied oxygen dynamic patterns.It takes~24 h for tri-gas incubator to achieve steady cell hypoxia,which fails to recapitulate ultrafast oxygen dynamics of intestinal ischemia/reperfusion(IR)injury.Inspired from the structure of native intestinal villi,we engineered an intestinal organoid chip embedded with engineered artificial microvessels based on coaxial microfluidic technology by using pH-responsive ZIF-8/sodium alginate scaffold.The chip was featured on:(i)eight times the oxygen exchange efficiency compared with the conventional device,tri-gas incubator,(ii)implantation of intestinal organoid reproducing all types of intestinal epithelial cells,and(iii)bio-responsiveness to hypoxia and reoxygenation(HR)by presenting metabolism disorder,inflammatory reaction,and cell apoptosis.Strikingly,it was found for the first time that Olfactomedin 4(Olfm4)was the most significantly downregulated gene under a rapid HR condition by sequencing the RNA from the organoids.Mechanistically,OLFM4 played protective functions on HR-induced cell inflammation and tissue damage by inhibiting the NF-kappa B signaling activation,thus it could be used as a therapeutic target.Altogether,this study overcomes the issue of mismatched oxygen dynamics between in vitro and in vivo,and sets an example of next-generation multisysteminteractive organoid chip for finding precise therapeutic targets of IR injury.
基金Hunan Provincial Innovation Foundation for Postgraduate(CX20190006)Special Fund for Hunan Provincial Innovative Province Building(2019RS3017)National Natural Science Foundation of China(61905284).
文摘In past decades,multi-wavelength lasers have attracted much attention due to their wide applications in many fields.In this paper,we demonstrate a multi-wavelength random fiber laser with customizable spectra enabled by an acousto–optic tunable filter.The operating wavelength range can be tuned from 1114.5 to 1132.5 nm with a maximal output power of 5.55 W,and spectral channel tuning can also be realized with a maximal number of five.The effect of gain competition and the interaction between Raman gain and insertion loss are also analyzed.Furthermore,the output spectra can be ordered by radiating appropriate radio frequency signals to the acousto–optic tunable filter.This work may provide a reference for agile shape spectrum generation and promote multi-wavelength random fiber laser practicability in sensing,telecommunications,and precise spectroscopy.
基金supported by the Natural National Science Foundation of China (No. 11802157)
文摘The typical behavior of unsteady flow and force evolution in a number of applications,such as aero-elastics, gust-wing interaction, flapping flight and flight maneuvering, can be understood using the starting flow model. Starting flow model is obtained either by setting rapidly an angle of attack for a wing moving at constant speed, or by accelerating a wing to a constant speed while gaining an angle of attack. In the limiting case of impulsively starting flow, the wing is assumed to gain suddenly an angle of attack in an initially uniform flow. Theories have been developed for impulsively starting flow at small angle of attack long before and at large angle of attack only recently, especially for incompressible and supersonic flow. This paper intends to provide a state-of-art overview of the typical flow phenomena, force evolution characteristics and developed theories for impulsively starting flow at any angle of attack and for both lower speed flow(vortex dominated) and high speed flow(compressible wave dominated). This review also provides some new topics that deserve further studies.
基金supported by the Special Foundation of Chinese Postdoctoral Science(No.2019T120082)Chinese Post-doc Science Foundation(No.2018M640119)the Natural National Science Foundation of China(No.11802157).
文摘Wagner problem is originally concerned with inviscid flow and unsteady force due to a small step motion,or attaining of a small angle of attack,of an airfoil in an initially uniform flow and has been studied recently for inviscid flow with large amplitude step motion.Here we propose to consider turbulent Wagner problem for a plate that is initially covered with a mixed laminarboundary layer on both sides and is set into step motion of small or large amplitude and in direction normal to the plate.The evolution of skin friction and transition region in time are examined numerically.It is found that transition region unexpectedly changes direction of movement for small amplitude of step motion while global transition or laminarization exists for large amplitude step motion.The significance of this study is twofold.First,the present study treated a new and interesting problem since it combines two problems of fundamental interests,one is Wagner problem and the other is boundary layer transition.Second,the present study appears to show that the pressure gradient normal to the airfoil and caused by discontinuous step motion may have subtle influence on transition and the mechanism of this influence deserves further studies.
基金the National Key R&D Program of China(Nos.2017YFC0805403 and 2019YFC1509704)the National Natural Science Foundation of China(Grant Nos.41877218 and 42072308).
文摘In order to study the bearing performance of a new type of prefabricated subway station structure(PSSS),firstly,a three-dimensional finite element model of the PSSS was established to study the nonlinear mechanics and deformation performance.Secondly,the bearing mechanism of a PSSS was investigated in detail.Finally,the development law of damages to a thin-walled prefabricated component and the failure evolution mechanism of a PSSS were discussed.The results showed that this new type of the PSSS had good bearing capacity.The top arch structure was a three-hinged arch bearing system,and the enclosure structure and the substructure were respectively used as the horizontal and vertical support systems of the three-hinged arch structure to ensure the integrity and stability of the overall structure.Moreover,the tongue-and-groove joints could effectively transmit the internal force between the components and keep the components deformed in harmony.The rigidity degradation of the PSSS caused by the accumulation of damages to the spandrel,hance,arch foot,and enclosure structure was the main reason of its loss of bearing capacity.The existing thin-walled components design had significant advantages in weight reduction,concrete temperature control,components hoisting,transportation and assembly construction,which achieved a good balance between safety,usability and economy.