Determination of the magnetic structure and confirmation of the presence or absence of inversion(P)and time reversal(Τ)symmetry is imperative for correctly understanding the topological magnetic materials.Here highqu...Determination of the magnetic structure and confirmation of the presence or absence of inversion(P)and time reversal(Τ)symmetry is imperative for correctly understanding the topological magnetic materials.Here highquality single crystals of the layered manganese pnictide CaMnSb_(2)are synthesized using the self-flux method.展开更多
The neutron Bragg-edge imaging is expected to be a new non-destructive energy-resolved neutron imaging technique for quantitatively two-dimensional or three-dimensional visualizing crystallographic information in a bu...The neutron Bragg-edge imaging is expected to be a new non-destructive energy-resolved neutron imaging technique for quantitatively two-dimensional or three-dimensional visualizing crystallographic information in a bulk material,which could be benefited from pulsed neutron source.Here we build a Bragg-edge imaging system on the General Purpose Powder Diffractometer at the China Spallation Neutron Source.The residual strain mapping of a bent Q235 ferrite steel sample has been achieved with a spectral resolution of 0.15%by the time-of-flight neutron Bragg-edge imaging on this system.The results show its great potential applications in materials science and engineering.展开更多
In order to realize a general-purpose automatic formal verification platform based on WebAssembly technology as a web service(FVPS),which aims to provide an automated report of vulnerability detections,this work build...In order to realize a general-purpose automatic formal verification platform based on WebAssembly technology as a web service(FVPS),which aims to provide an automated report of vulnerability detections,this work builds a Hyperledger Fabric blockchain runtime model.It proposes an optimized methodology of the functional equivalent translation from source program languages to formal languages.This methodology utilizes an external application programming interface(API)table to replace the source codes in compilation,thereby pruning the part of housekeeping codes to ease code inflation.Code inflation is a significant metric in formal language translation.Namely,minor code inflation enhances verification scale and performance efficiency.It determines the efficiency of formal verification,involving launching,running,and memory usage.For instance,path explosion increases exponentially,resulting in out-of-memory.The experimental results conclude that program languages like golang severely impact code inflation.FVPS reduces the wasm code size by over 90%,achieving two orders of optimization magnitude,from 2000 kilobyte(KB)to 90 KB.That means we can cope with golang applications up to 20 times larger than the original in scale.This work eliminates the gap between Hyperledger Fabric smart contracts and WebAssembly.Our approach is pragmatic,adaptable,extendable,and flexible.Nowadays,FVPS is successfully applied in a Railway-Port-Aviation blockchain transportation system.展开更多
Magnetic materials with non-collinear spin orderings provide an outstanding platform to probe spin-tronic phenomena owing to their strong spin-orbit coupling(SOC)and unique Berry phase.It is thus important to obtain a...Magnetic materials with non-collinear spin orderings provide an outstanding platform to probe spin-tronic phenomena owing to their strong spin-orbit coupling(SOC)and unique Berry phase.It is thus important to obtain a non-collinear antiferromagnetic(AFM)phase at room temperature(RT).Signifi-cantly,the discovery of novel materials with nearly zero thermal expansion(ZTE)property near RT is required and pursued for avoiding thermal stress and fracture in spintronic devices.Herein,the doping of Sn(Ge)at the Ag site in the triangular lattice Mn_(3)Ag_(1-x)Sn(Ge)_(x)N compounds increases effectively the Neel point and makes the interesting non-collinearГ^(5g)AFM phase exist above RT.The magnetic phase diagrams withГ^(5g)phase up to 498 K were built by the combined analysis of neutron powder diffraction(NPD),magnetic measurements,electronic transport,and differential scanning calorimetry(DSC).The thermal expansion behaviors of Mn_(3)Ag_(1-x)Sn(Ge)_(x)N were modulated,and the nearly ZTE above RT was achieved in Mn_(3)Ag_(0.5)Ge_(0.5)N withinГ^(5g)AFM ordering.Our findings offer an effective way to tailor the non-collinear AFM ordering and correlated thermal expansion behavior for potential use in the emerging field of thermal stress-free magnetic chip materials.展开更多
In the present work,selective laser melting(SLM)technology was utilized for manufacturing CX stainless steel samples under a series of laser parameters.The effect of laser linear energy density on the microstructure c...In the present work,selective laser melting(SLM)technology was utilized for manufacturing CX stainless steel samples under a series of laser parameters.The effect of laser linear energy density on the microstructure characteristics,phase distribution,crystallographic orientation and mechanical properties of these CX stainless steel samples were investigated theoretically and experimentally via scanning electron microscope(SEM),X-ray diffraction(XRD),electron backscatter diffraction(EBSD)and transmission electron microscope(TEM).Based on the systematic study,the SLM CX stainless steel sample with best surface roughness(Ra=4.05±1.8μm)and relative density(Rd=99.72%±0.22%)under the optimal linear density(η=245 J/m)can be obtained.SLM CX stainless steel was primarily constituted by a large number of fine martensite(α’phase)structures(i.e.,cell structures,cellular dendrites and blocky grains)and a small quantity of austenite(γphase)structures.The pre ferred crystallographic orientation(i.e.,<111>direction)can be determined in the XZ plane of the SLM CX sample.Furthermore,under the optimal linear energy density,the good combinations with the highest ultimate tensile strength(UTS=1068.0%±5.9%)and the best total elongation(TE=15.70%±0.26%)of the SLM CX sample can be attained.Dislocation strengthening dominates the strengthening mechanism of the SLM CX sample in as-built state.展开更多
Materials with intrinsically low thermal conductivity are of fundamental interests.Here we report a new sort of simple one-dimensional(1 D)crystal structured bismuth selenohalides(Bi Se X,X=Br,I)with extremely low the...Materials with intrinsically low thermal conductivity are of fundamental interests.Here we report a new sort of simple one-dimensional(1 D)crystal structured bismuth selenohalides(Bi Se X,X=Br,I)with extremely low thermal conductivity of^0.27 W m^-1K^-1 at 573 K.The mechanism of the extremely low thermal conductivity in 1 D Bi Se X is elucidated systematically using the first-principles calculations,neutron powder-diffraction measurements and temperature tunable aberration-corrected scanning transmission electron microscopy(STEM).Results reveal that the1 D structure of Bi Se X possesses unique soft bonding character,low phonon velocity,strong anharmonicity of both acoustic and optical phonon modes,and large off-center displacement of Bi and halogen atoms.Cooperatively,all these features contribute to the minimal phonon transport.These findings provide a novel selection rule to search low thermal conductivity materials with potential applications in thermoelectrics and thermal barrier coatings.展开更多
We report a study of the structure and magnetic properties of the S=3/2 zigzag spin chain compound BaCoTe_(2)O_(7).Neutron diffraction measurements show that it crystallizes in the noncentrosymmetric space group Ama2 ...We report a study of the structure and magnetic properties of the S=3/2 zigzag spin chain compound BaCoTe_(2)O_(7).Neutron diffraction measurements show that it crystallizes in the noncentrosymmetric space group Ama2 with a canted↑↑↓↓spin structure along the quasi-one-dimensional zigzag chain and a moment size of 1.89(2)μBat 2 K.Both magnetic susceptibility and specific heat measurements yield an antiferromagnetic phase transition at TN=6.2 K.A negative Curie-Weiss temperature,ΘCW=-74.7(2) K,and an empirical frustration parameter,f=|ΘCW|/TN≈12,are obtained by fitting the magnetic susceptibility,indicating antiferromagnetic interactions and strong magnetic frustration.From ultraviolet-visible absorption spectroscopy and first-principles calculations,an indirect band gap of 2.68(2) eV is determined.We propose that the canted zigzag spin chain of BaCoTe_(2)O_(7) may produce a change in the polarization via the exchange-striction mechanism.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.12074023,12304053,and 12174018)the Large Scientific Facility Open Subject of Songshan Lake(Dongguan,Guangdong)the Fundamental Research Funds for the Central Universities in China。
文摘Determination of the magnetic structure and confirmation of the presence or absence of inversion(P)and time reversal(Τ)symmetry is imperative for correctly understanding the topological magnetic materials.Here highquality single crystals of the layered manganese pnictide CaMnSb_(2)are synthesized using the self-flux method.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFB0701903 and 2016YFA0401502)the National Natural Science Foundation of China(Grant No.12041202)+2 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2017023)the Guangdong Natural Science Foundation,China(Grant No.2016A030313129)the Department of Science and Technology of Guangdong Province under grant project of energy-resolved neutron imaging instrument.
文摘The neutron Bragg-edge imaging is expected to be a new non-destructive energy-resolved neutron imaging technique for quantitatively two-dimensional or three-dimensional visualizing crystallographic information in a bulk material,which could be benefited from pulsed neutron source.Here we build a Bragg-edge imaging system on the General Purpose Powder Diffractometer at the China Spallation Neutron Source.The residual strain mapping of a bent Q235 ferrite steel sample has been achieved with a spectral resolution of 0.15%by the time-of-flight neutron Bragg-edge imaging on this system.The results show its great potential applications in materials science and engineering.
基金This work was supported by the National Key R&D Program of China,Grant No.2018YFA0306703.
文摘In order to realize a general-purpose automatic formal verification platform based on WebAssembly technology as a web service(FVPS),which aims to provide an automated report of vulnerability detections,this work builds a Hyperledger Fabric blockchain runtime model.It proposes an optimized methodology of the functional equivalent translation from source program languages to formal languages.This methodology utilizes an external application programming interface(API)table to replace the source codes in compilation,thereby pruning the part of housekeeping codes to ease code inflation.Code inflation is a significant metric in formal language translation.Namely,minor code inflation enhances verification scale and performance efficiency.It determines the efficiency of formal verification,involving launching,running,and memory usage.For instance,path explosion increases exponentially,resulting in out-of-memory.The experimental results conclude that program languages like golang severely impact code inflation.FVPS reduces the wasm code size by over 90%,achieving two orders of optimization magnitude,from 2000 kilobyte(KB)to 90 KB.That means we can cope with golang applications up to 20 times larger than the original in scale.This work eliminates the gap between Hyperledger Fabric smart contracts and WebAssembly.Our approach is pragmatic,adaptable,extendable,and flexible.Nowadays,FVPS is successfully applied in a Railway-Port-Aviation blockchain transportation system.
基金supported by the financial support of National Key R&D Program of China(2022YFA1402600)National Natural Science Foundation of China(NSFC)(52272264)+1 种基金Sino-German Mobility Programme Project(M-0273)the Guangdong Basic and Applied Basic Research Foundation(2022A1515140117).
文摘Magnetic materials with non-collinear spin orderings provide an outstanding platform to probe spin-tronic phenomena owing to their strong spin-orbit coupling(SOC)and unique Berry phase.It is thus important to obtain a non-collinear antiferromagnetic(AFM)phase at room temperature(RT).Signifi-cantly,the discovery of novel materials with nearly zero thermal expansion(ZTE)property near RT is required and pursued for avoiding thermal stress and fracture in spintronic devices.Herein,the doping of Sn(Ge)at the Ag site in the triangular lattice Mn_(3)Ag_(1-x)Sn(Ge)_(x)N compounds increases effectively the Neel point and makes the interesting non-collinearГ^(5g)AFM phase exist above RT.The magnetic phase diagrams withГ^(5g)phase up to 498 K were built by the combined analysis of neutron powder diffraction(NPD),magnetic measurements,electronic transport,and differential scanning calorimetry(DSC).The thermal expansion behaviors of Mn_(3)Ag_(1-x)Sn(Ge)_(x)N were modulated,and the nearly ZTE above RT was achieved in Mn_(3)Ag_(0.5)Ge_(0.5)N withinГ^(5g)AFM ordering.Our findings offer an effective way to tailor the non-collinear AFM ordering and correlated thermal expansion behavior for potential use in the emerging field of thermal stress-free magnetic chip materials.
基金supported financially by the Sciences Platform Environment and Capacity Building Projects of GDAS(No.2019GDASYL-0502006)the Key R&D Program of Guangdong Province(No.2020B090923002)+3 种基金the Guangdong Academy of Science Projects(No.2021GDASYL-20210102005)the Guangdong Province Science and Technology Plan Projects(No.2020A1515011096)the Guangzhou Project of Science&Technology(Nos.202007020008 and 201807010030)the support from the Program of CSC(No.201801810106)。
文摘In the present work,selective laser melting(SLM)technology was utilized for manufacturing CX stainless steel samples under a series of laser parameters.The effect of laser linear energy density on the microstructure characteristics,phase distribution,crystallographic orientation and mechanical properties of these CX stainless steel samples were investigated theoretically and experimentally via scanning electron microscope(SEM),X-ray diffraction(XRD),electron backscatter diffraction(EBSD)and transmission electron microscope(TEM).Based on the systematic study,the SLM CX stainless steel sample with best surface roughness(Ra=4.05±1.8μm)and relative density(Rd=99.72%±0.22%)under the optimal linear density(η=245 J/m)can be obtained.SLM CX stainless steel was primarily constituted by a large number of fine martensite(α’phase)structures(i.e.,cell structures,cellular dendrites and blocky grains)and a small quantity of austenite(γphase)structures.The pre ferred crystallographic orientation(i.e.,<111>direction)can be determined in the XZ plane of the SLM CX sample.Furthermore,under the optimal linear energy density,the good combinations with the highest ultimate tensile strength(UTS=1068.0%±5.9%)and the best total elongation(TE=15.70%±0.26%)of the SLM CX sample can be attained.Dislocation strengthening dominates the strengthening mechanism of the SLM CX sample in as-built state.
基金supported by the National Key Research and Development Program of China(2018YFA0702100 and 2018YFB0703600)the National Natural Science Foundation of China(51772012 and 51632005)+5 种基金Shenzhen Peacock Plan team(KQTD2016022619565991)Beijing Natural Science Foundation(JQ18004)China Postdoctoral Science Foundation Grant(2019M650429)111 Project(B17002)the National Science Foundation for Distinguished Young Scholars(51925101)the financial support from Singapore Ministry of Education Tier 1grant(R-284-000-212-114)for Lee Kuan Yew Postdoctoral Fellowship。
文摘Materials with intrinsically low thermal conductivity are of fundamental interests.Here we report a new sort of simple one-dimensional(1 D)crystal structured bismuth selenohalides(Bi Se X,X=Br,I)with extremely low thermal conductivity of^0.27 W m^-1K^-1 at 573 K.The mechanism of the extremely low thermal conductivity in 1 D Bi Se X is elucidated systematically using the first-principles calculations,neutron powder-diffraction measurements and temperature tunable aberration-corrected scanning transmission electron microscopy(STEM).Results reveal that the1 D structure of Bi Se X possesses unique soft bonding character,low phonon velocity,strong anharmonicity of both acoustic and optical phonon modes,and large off-center displacement of Bi and halogen atoms.Cooperatively,all these features contribute to the minimal phonon transport.These findings provide a novel selection rule to search low thermal conductivity materials with potential applications in thermoelectrics and thermal barrier coatings.
基金supported by the National Natural Science Foundation of China(Grant No.11904414)the National Key Research and Development Program of China(Grant No.2019YFA0705702)+3 种基金supported by the National Key Research and Development Program of China(Grant Nos.2018YFA0306001,and 2017YFA0206203)the National Natural Science Foundation of China(Grant No.11974432)the Guangdong Basic and Applied Basic Research Fund(Grant No.2019A1515011337)the Leading Talent Program of Guangdong Special Projects。
文摘We report a study of the structure and magnetic properties of the S=3/2 zigzag spin chain compound BaCoTe_(2)O_(7).Neutron diffraction measurements show that it crystallizes in the noncentrosymmetric space group Ama2 with a canted↑↑↓↓spin structure along the quasi-one-dimensional zigzag chain and a moment size of 1.89(2)μBat 2 K.Both magnetic susceptibility and specific heat measurements yield an antiferromagnetic phase transition at TN=6.2 K.A negative Curie-Weiss temperature,ΘCW=-74.7(2) K,and an empirical frustration parameter,f=|ΘCW|/TN≈12,are obtained by fitting the magnetic susceptibility,indicating antiferromagnetic interactions and strong magnetic frustration.From ultraviolet-visible absorption spectroscopy and first-principles calculations,an indirect band gap of 2.68(2) eV is determined.We propose that the canted zigzag spin chain of BaCoTe_(2)O_(7) may produce a change in the polarization via the exchange-striction mechanism.