Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s...Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field.展开更多
Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)co...Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)containing NH_(2)-MIL-53(Al),[PP_(13)][TFSI],LiTFSI,and PVDF-HFP was prepared using a simple method of solution casting.The effects of encapsulating different ratios of ionic liquid([PP_(13)][TFSI])into the micropores of functionalized metal-organic frameworks(NH_(2)-MIL-53(Al))on the electrochemical properties were compared.XRD,SEM,nitrogen adsorption-desorption isotherms,and electrochemical measurements were conducted.This GPE demonstrates a superior ionic conductivity of 8.08×10^(-4)S·cm^(-1)at 60℃and can sustain a discharge specific capacity of 156.6 mA·h·g^(-1)at 0.2 C for over 100 cycles.This work might offer a potential approach to alleviate the solid-solid contact with the solid-state electrolyte and electrodes and broaden a new window for the creation of all-solid-state batteries.展开更多
At present,commercial Li-ion batteries are hardly to satisfy the growing demand for high energy density,for this purpose,lithium metal batteries have attracted worldwide attention in recent years.However,its practical...At present,commercial Li-ion batteries are hardly to satisfy the growing demand for high energy density,for this purpose,lithium metal batteries have attracted worldwide attention in recent years.However,its practical applications are hindered by the formation of Li dendrites and volume effect during Li plating/stripping process,which leads to a lot of safety hazards.Herein,we first employed MOF-derived V_(2)O_(5) nanoparticles to decorate the carbon fiber cloth(CFC)backbone to acquire a lithiophilic 3D porous conductive framework(CFC@V_(2)O_(5)).Subsequently,the CFC@V_(2)O_(5) skeleton was permeated with molten Li to prepare CFC@V_(2)O_(5)@Li composite anode.The CFC@V_(2)O_(5)@Li composite anode can be stably cycled for more than 1650 h at high current density(5 mA·cm^(-2))and areal capacity(5 mA·h·cm^(–2)).The prepared full cell can initially maintain a high capacity of about 143 mA·h·g^(-1) even at a high current density of 5 C,and can still maintain 114 mA·h·g^(-1) after 1000 cycles.展开更多
BACKGROUND:Disseminated intravascular coagulation(DIC)is associated with increased mortality in sepsis patients.In this study,we aimed to assess the clinical ability of sepsis-induced coagulopathy(SIC)and sepsis-assoc...BACKGROUND:Disseminated intravascular coagulation(DIC)is associated with increased mortality in sepsis patients.In this study,we aimed to assess the clinical ability of sepsis-induced coagulopathy(SIC)and sepsis-associated coagulopathy(SAC)criteria in identifying overt-DIC and preDIC status in sepsis patients.METHODS:Data from 419 sepsis patients were retrospectively collected from July 2018 to December 2022.The performances of the SIC and SAC were assessed to identify overt-DIC on days 1,3,7,or 14.The SIC status or SIC score on day 1,the SAC status or SAC score on day 1,and the sum of the SIC or SAC scores on days 1 and 3 were compared in terms of their ability to identify pre-DIC.The SIC or SAC status on day 1 was evaluated as a pre-DIC indicator for anticoagulant initiation.RESULTS:On day 1,the incidences of coagulopathy according to overt-DIC,SIC and SAC criteria were 11.7%,22.0%and 31.5%,respectively.The specificity of SIC for identifying overt-DIC was significantly higher than that of the SAC criteria from day 1 to day 14(P<0.05).On day 1,the SIC score with a cut-off value>3 had a significantly higher sensitivity(72.00%)and area under the curve(AUC)(0.69)in identifying pre-DIC than did the SIC or SAC status(sensitivity:SIC status 44.00%,SAC status 52.00%;AUC:SIC status 0.62,SAC status 0.61).The sum of the SIC scores on days 1 and 3 had a higher AUC value for identifying the pre-DIC state than that of SAC(0.79 vs.0.69,P<0.001).Favorable effects of anticoagulant therapy were observed in SIC(adjusted hazard ratio[HR]=0.216,95%confidence interval[95%CI]:0.060–0.783,P=0.018)and SAC(adjusted HR=0.146,95%CI:0.041–0.513,P=0.003).CONCLUSION:The SIC and SAC seem to be valuable for predicting overt-DIC.The sum of SIC scores on days 1 and 3 has the potential to help identify pre-DIC.展开更多
Metal-organic frameworks(MOFs) are becoming more and more popular as the fillers in polymer electrolytes in recent years. In this study, a series of MOFs(NH_(2)-MIL-101(Fe), MIL-101(Fe), activated NH_(2)-MIL-101(Fe) a...Metal-organic frameworks(MOFs) are becoming more and more popular as the fillers in polymer electrolytes in recent years. In this study, a series of MOFs(NH_(2)-MIL-101(Fe), MIL-101(Fe), activated NH_(2)-MIL-101(Fe) and activated MIL-101(Fe)) were synthesized and added to PEO-based solid composite electrolytes(SCEs). Furthermore, the role of the —NH_(2) groups and open metal sites(OMSs) were both examined. Different ratios of MOFs vs polymers were also studied by the electrochemical characterizations. At last, we successfully designed a novel solid composite electrolyte containing activated NH_(2)-MIL-101(Fe),PEO, Li TFSI and PVDF for the high-performance all-solid-state lithium-metal batteries. This work might provide new insight to understand the interactions between polymers and functional groups or OMSs of MOFs better.展开更多
All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance ...All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance caused by the poor Li~+transport kinetics due to the solid-solid contacts between the electrodes and the solid-state electrolytes.Herein,a novel gel polymer electrolyte(UPP-5)composed of ionic liquid incorporated metal-organic frameworks nanoparticles(IL@MOFs)is designed,it exhibits satisfying electrochemical performances,consisting of an excellent electrochemical stability window(5.5 V)and an improved Li^(+)transference number of 0.52.Moreover,the Li/UPP-5/LiFePO_(4) full cells present an ultra-stable cycling performance at 0.2C for over 100 cycles almost without any decay in capacities.This study might provide new insight to create an effective Li^(+)conductive network for the development of all-solid-state lithium-ion batteries.展开更多
A sulfated galactoftucan designated as UpG was obtained from the brown algae Undaria pinnatifida by calcium chloride extraction.Chemical analyses showed that UpG is composed of galactose and fucose at a high sulfation...A sulfated galactoftucan designated as UpG was obtained from the brown algae Undaria pinnatifida by calcium chloride extraction.Chemical analyses showed that UpG is composed of galactose and fucose at a high sulfation level.Low-molecular weight UpGP-0.5 was prepared from UpG through acid hydrolysis for structure characterization.The backbones of UpG are determined to beα-(1,3)-Fuc,α-(1,4)-Gal,α-(1,3)-Gal,andα-(1,6)-Gal by GC-MS,FT-IR,NMR,and LC-MS analyses.Sulfate groups are modified at C2 and/or C4 of fucose and C3 and/or C4 of galactose.UpG could partially lower blood sugar and serum lipid levels in type 2 diabetic mice.Moreover,UpG treatment regulates the abundance of some specific gut microbiota,such as enriching the abundance of Muribaculum and Christensenellaceae,and reducing that of Bilophila,Tannerellaceae,Candidatus Saccharimonas and Anaerotruncus.The findings characterized the detailed structure of a sulfated galactofucan and investigated its potential for the treatment of type 2 diabetes mellitus.展开更多
Red blood cells(RBCs)have recently emerged as promosing candidates for cancer treatment in terms of relieving tumor hypoxia and inducing oxidative damage against cancer cells,but they are still far from satisfactory d...Red blood cells(RBCs)have recently emerged as promosing candidates for cancer treatment in terms of relieving tumor hypoxia and inducing oxidative damage against cancer cells,but they are still far from satisfactory due to their limited oxygen transport and reactive oxygen species generation rate in tumor tissue.Herein,artificial RBCs(designated FTP@RBCM)with radical storm production ability were developed for oncotherapy through multidimensional reactivity pathways of Fe-protoporphyrin-based hybrid metal-organic frameworks(FTPs,as the core),including photodynamic/chemodynamic-like,catalase-like and glutathione peroxidase-like activities.Meanwhile,owing to the advantages of long circulation abilities of RBCs provided by their cell membranes(RBCMs),FTP with a surface coated with RBCMs(FTP@RBCM)could enormously accumulate at tumor site to achieve remarkably enhanced therapeutic efficiency.Intriguingly,this ROS-mediated dynamic therapy was demonstrated to induce acute local inflammation and high immunogenic cancer death,which evoked a systemic antitumor immune response when combined with the newly identified T cell immunoglobulin and mucin-containing molecule 3(Tim-3)checkpoint blockade,leading to not only effective elimination of primary tumors but also an abscopal effect of growth suppression of distant tumors.Therefore,such RBC-mimic nanocatalysts with multidimensional catalytic capacities might provide a promising new insight into synergistic cancer treatment.展开更多
This work aimed to study the beneficial role of human umbilical cord blood-derived mesenchymal stem cellconditioned medium(MSC-CM)in hypoxia-induced apoptosis in H9c2 cardiomyoblasts,in which the serine/heroine kinase...This work aimed to study the beneficial role of human umbilical cord blood-derived mesenchymal stem cellconditioned medium(MSC-CM)in hypoxia-induced apoptosis in H9c2 cardiomyoblasts,in which the serine/heroine kinases(Akt)pathway would be involved.For this,CM was collected by culturing MSCs in serum-free DMEM medium for 24 h,and paracrine factors were analyzed by protein chip.H9c2 cells were divided into the following groups:control group,hypoxia group,MSC-CM intervention group(CM group),MSC-CM+Akt phosphorylation inhibitor(LY294002)group(LY group).Apoptosis of the H9c2 cells was tested with chromatin dye Hoechst 33342 and FITC-conjugated Annexin V apoptosis detection kit by flow cytometer after a hypoxia/serum deprivation(H/SD)for 24 h.The apoptosis-related proteins were evaluated by Western blot.MSC-CM displayed significantly elevated levels of growth factors,anti-inflammatory,and anti-apoptosis cytokines.On Hoechst 33342 apoptosis staining,the H9c2 cell morphology displayed a lower proportion of apoptosis in the CM group than those in the hypoxia group,while apoptosis was increased in LY group.Flow cytometer analysis revealed the apoptosis ratio in the CM group was lower than the hypoxia group(12.34±2.00%vs.21.73±2.58%,p<0.05),while the LY group was significantly higher(22.54±3.89%).Active caspase-3 expression was increased in hypoxia group than control group(p<0.05),but decreased in CM group(p<0.01).Umbilical cord blood-derived mesenchymal stem cell-conditioned media secrete multiple paracrine factors that are able to inhibit hypoxia-induced H9c2 cardiomyoblasts apoptosis,and in which the activation of Akt phosphorylation is involved to achieve the protective effect.展开更多
The 22-year(1998-2019)surface seawater dimethylsulfi de(DMS)concentrations in the Yellow Sea(YS)were hindcasted based on satellite sea surface temperature(SST)and chlorophyll-a(Chl-a)data using a generalized additive ...The 22-year(1998-2019)surface seawater dimethylsulfi de(DMS)concentrations in the Yellow Sea(YS)were hindcasted based on satellite sea surface temperature(SST)and chlorophyll-a(Chl-a)data using a generalized additive mixed model(GAMM).A continuous monthly dataset of DMS concentration in the YS was obtained after using the data interpolation empirical orthogonal function(DINEOF)to reconstruct missing information in the dataset.Then,the interannual DMS variability in the YS was analyzed.The results indicated that the monthly climatological DMS concentration in the YS was 3.61 nmol/L.DMS concentrations in the spring and summer were signifi cantly higher than those in the autumn and winter.DMS concentrations were highest in coastal YS waters and lowest primarily in off shore YS waters.Interannual DMS variability between 1998 and 2019 was subdivided into two inverse phases:with the exception of the central YS,DMS increased before the turning point and decreased after.The turning point in interannual DMS variation was earlier in the inshore YS as compared to the central YS.Spectrum analysis identifi ed some signifi cant patterns of interannual variation in the DMS anomaly in the YS.Chl a appeared to be the main factor infl uencing interannual trends in DMS in the YS.Interannual DMS variability was under the joint control of Chl a and SST.However,short-term interannual DMS variation(2-3 years)was primarily related to SST,while longer term interannual DMS variation(6-8 years)was signifi cantly correlated with Chl a and SST.展开更多
Landscapes of the mountainous regions in northwestern China comprise a unique pattern of vegetation,consisting of a mosaic of grassland and shrub-forest.Forests generally self-organize into ordered structures and coal...Landscapes of the mountainous regions in northwestern China comprise a unique pattern of vegetation,consisting of a mosaic of grassland and shrub-forest.Forests generally self-organize into ordered structures and coalesce into blocks on north-facing slopes or stripes along southeast-facing slopes,with Picea crassifolia being the most representative and dominant tree species.We investigated the tree-water status and soil-moisture dynamics at a forest site(Guantan)of the Qilian Mountains in northwest China.The 30-minute-interval measurements of tree-sap flow during the growing season of 2008 are presented,and the potential functional relations between tree transpiration and environmental factors are evaluated.Soil moisture and solar energy were identified as the most influential factors,explaining more than 70%of the variance in sap flow.Based on field measurements obtained at the forest site,a stochastic model of soil-moisture dynamics was tested;and the steady-state probability density functions(PDFs)of the long-term soil-moisture dynamics and static tree-water stress were estimated using the validated model and parameters.We found that the model reproduced measured soil moisture well,despite all the simplifying assumptions.The generated PDF of long-term soil moisture was relatively open,with middle to low average values;and the calculated density of the static tree-water stress at the forest site was largely concentrated between 0 and 0.6,suggesting a moderate water-stress situation in most cases.We argue that both water and energy are limiting factors for vegetation at the forest site.In addition,the tradeoff between reduced evapotranspiration(ET)from limited solar energy and increased soil-moisture availability may create a stressed but tolerable environment and,in turn,produce a relatively constant ecological niche favorable to Picea crassifolia growth.展开更多
Atmospheric effects have significant influence on the performance of a free-space optical continuous variable quantum key distribution(CVQKD)system.In this paper,we investigate how the transmittance,excess noise and i...Atmospheric effects have significant influence on the performance of a free-space optical continuous variable quantum key distribution(CVQKD)system.In this paper,we investigate how the transmittance,excess noise and interruption probability caused by atmospheric effects affect the secret-key rate(SKR)of the CVQKD.Three signal wavelengths,two weather conditions,two detection schemes,and two types of attacks are considered in our investigation.An expression aims at calculating the interruption probability is proposed based on the Kolmogorov spectrum model.The results show that a signal using long working wavelength can propagate much further than that of using short wavelength.Moreover,as the wavelength increases,the influence of interruption probability on the SKR becomes more significant,especially within a certain transmission distance.Therefore,interruption probability must be considered for CVQKD by using long-signal wavelengths.Furthermore,different detection schemes used by the receiver will result in different transmission distances when subjected to individual attacks and collective attacks,respectively.展开更多
For several decades,the promise of implementing of lithium(Li)metal anodes has been regarded as the"holy grail"for Li-based batteries.Herein,we have proposed a facile design of a carbon fiber cloth(CFC)frame...For several decades,the promise of implementing of lithium(Li)metal anodes has been regarded as the"holy grail"for Li-based batteries.Herein,we have proposed a facile design of a carbon fiber cloth(CFC)framework coated with SnO_(2)nanoparticles through a hydrothermal process,which served as a reliable host for prestoring molten Li to produce a CFC@SnO_(2)@Li composite anode.XRD,TEM,HRTEM,XPS and different electrochemical characterizations were carried out.Owing to the synergetic effects of the 3D conductive CFC and the coated lithiophilic SnO_(2)nanoparticles,the designed CFC@SnO_(2)@Li electrodes can buffer the volume changes and reduce the local current density,thus suppress the Li dendrites during cycling.Consequently,the CFC@SnO_(2)electrodes showed a high and stable CE of 98.6%for 1000 cycles at a current density of 1 mA cm^(-2)(1 mAh cm^(-2)).What is more,at a high current density of 5 mA cm^(-2)and a high areal capacity of 5 mAh cm^(-2),the symmetric cell displayed relatively low overpotential and long cycling lifetime of 1600 h.The results confirm its great potential as lithium metal anodes in practical battery applications.展开更多
This study aims to introduce the protocol for ultrasonic backscatter measurements of musculoskeletal properties based on a novel ultrasonic backscatter bone diagnostic(UBBD)instrument.Dual-energy X-ray absorptiometry(...This study aims to introduce the protocol for ultrasonic backscatter measurements of musculoskeletal properties based on a novel ultrasonic backscatter bone diagnostic(UBBD)instrument.Dual-energy X-ray absorptiometry(DXA)can be adopted to measure bone mineral density(BMD)in the hip,spine,legs and the whole body.The muscle and fat mass in the legs and the whole body can be also calculated by DXA body composition analysis.Based on the proposed protocol for backscatter measurements by UBBD,ultrasonic backscatter signals can be measured in vivo,deriving three backscatter parameters[apparent integral backscatter(AIB),backscatter signal peak amplitude(BSPA)and the corresponding arrival time(BSPT)].AIB may provide important diagnostic information about bone properties.BSPA and BSPT may be important indicators of muscle and fat properties.The standardized backscatter measurement protocol of the UBBD instrument may have the potential to evaluate musculoskeletal characteristics,providing help for promoting the application of the backscatter technique in the clinical diagnosis of musculoskeletal disorders(MSDs),such as osteoporosis and muscular atrophy.展开更多
For all-solid-state lithium batteries(ASSLBs),polymer-blended solid composite electrolytes(SCEs)have drawn wide interest owing to their significance in improving the interfacial solid-solid contacts and inhibiting the...For all-solid-state lithium batteries(ASSLBs),polymer-blended solid composite electrolytes(SCEs)have drawn wide interest owing to their significance in improving the interfacial solid-solid contacts and inhibiting the growth of lithium dendrites.In this work,SCEs based on PVDF-HFP/PMMA matrix containing MOFs(NH2-MIL-53(Al))and LiTFSI were designed and synthesized employing an easy solution casting method.The synthesized samples were examined by XRD,SEM,EDS,and electrochemical tests.It was found that MPP-2 SCE not only has excellent ionic conductivity at 60℃ of 5.54×10^(−4) S cm^(−1),but also exhibits superior interfacial compatibility in Li||Li symmetric batteries,which can constantly cycle for about 800 h at 0.1 mA cm^(−2) with no short-circuiting.The assembled Li|MPP-2|LiFePO4 cell exhibited a first discharge specific capacity of up to 157.1 mAh g^(−1) at 60℃ and 0.2 C.This work may help to further advance the progress of ASSLBs in the future.展开更多
Comprehensive Summary This work systematically reviews recent progresses in the applications of MOF-derived materials modified 3D porous conductive framework as hosts for uniform lithium deposition in LMBs.A series of...Comprehensive Summary This work systematically reviews recent progresses in the applications of MOF-derived materials modified 3D porous conductive framework as hosts for uniform lithium deposition in LMBs.A series of commonly used lithiophilic materials and several kinds of representative MOF-derivation-modified 3D hosts as lithium metal anode(LMA)are presented.Finally,the challenges and future development of employing MOF-derived materials to modify the 3D porous conductive framework for LMA are included.展开更多
Anisotropic nanoparticles,giving rise to a large number of novel physicochemical properties and functionalities,have provoked increasing attentions in nanoscience and nanotechnology.The remained challenge is to develo...Anisotropic nanoparticles,giving rise to a large number of novel physicochemical properties and functionalities,have provoked increasing attentions in nanoscience and nanotechnology.The remained challenge is to develop synthetic methods for the fabrication of anisotropic nanoparticles with less symmetry under the principle of minimum surface free energy.Here,we established a crystallization-assisted asymmetric assembly method for the synthesis of anisotropic polymer nanocrescents and their carbonaceous analogues by using triblock copolymer F127 and octadecanol in aqueous solution.With the aid of molecular dynamics(MD)simulation,we demonstrate that the observed crescent structure is caused by asymmetry distribution of octadecanol crystal within the hydrophobic core of F127 micelles,via the formation of intermediate elliptic micelles bearing hydrophobic ends that further fuse with each other end-to-end at an angle into curing nanocrescent morphology.The influences of annealing time,annealing temperature,and mole ratios of precursors that govern the kinetics of the assembly and polymerization process were systematically investigated and a series of polymer nanocrescents with tunable length of~85 to~262 nm and aspect ratio of~1.1 to~3.0 were prepared.The ability to create novel crescent-shaped polymer and carbon nanoparticles and the identification of asymmetric assembly process by combining experiment and simulation study will provide a valuable contribution both to theoretical and technological researches.展开更多
基金supported by the National Natural Science Foundation of China (Nos.21701083 and 22179054).
文摘Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field.
基金financially supported by National Natural Science Foundation of China(21701083)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX20_3137)。
文摘Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)containing NH_(2)-MIL-53(Al),[PP_(13)][TFSI],LiTFSI,and PVDF-HFP was prepared using a simple method of solution casting.The effects of encapsulating different ratios of ionic liquid([PP_(13)][TFSI])into the micropores of functionalized metal-organic frameworks(NH_(2)-MIL-53(Al))on the electrochemical properties were compared.XRD,SEM,nitrogen adsorption-desorption isotherms,and electrochemical measurements were conducted.This GPE demonstrates a superior ionic conductivity of 8.08×10^(-4)S·cm^(-1)at 60℃and can sustain a discharge specific capacity of 156.6 mA·h·g^(-1)at 0.2 C for over 100 cycles.This work might offer a potential approach to alleviate the solid-solid contact with the solid-state electrolyte and electrodes and broaden a new window for the creation of all-solid-state batteries.
基金supported by National Natural Science Foundation of China(21701083).
文摘At present,commercial Li-ion batteries are hardly to satisfy the growing demand for high energy density,for this purpose,lithium metal batteries have attracted worldwide attention in recent years.However,its practical applications are hindered by the formation of Li dendrites and volume effect during Li plating/stripping process,which leads to a lot of safety hazards.Herein,we first employed MOF-derived V_(2)O_(5) nanoparticles to decorate the carbon fiber cloth(CFC)backbone to acquire a lithiophilic 3D porous conductive framework(CFC@V_(2)O_(5)).Subsequently,the CFC@V_(2)O_(5) skeleton was permeated with molten Li to prepare CFC@V_(2)O_(5)@Li composite anode.The CFC@V_(2)O_(5)@Li composite anode can be stably cycled for more than 1650 h at high current density(5 mA·cm^(-2))and areal capacity(5 mA·h·cm^(–2)).The prepared full cell can initially maintain a high capacity of about 143 mA·h·g^(-1) even at a high current density of 5 C,and can still maintain 114 mA·h·g^(-1) after 1000 cycles.
基金supported by the National Key Research and Development Program of China(2021YFC2501800)Shanghai Committee of Science and Technology(20Y11900100,21MC1930400,and 20DZ2261200)Clinical Research Plan of Shanghai Hospital Development Center(SHDC2020CR4059)。
文摘BACKGROUND:Disseminated intravascular coagulation(DIC)is associated with increased mortality in sepsis patients.In this study,we aimed to assess the clinical ability of sepsis-induced coagulopathy(SIC)and sepsis-associated coagulopathy(SAC)criteria in identifying overt-DIC and preDIC status in sepsis patients.METHODS:Data from 419 sepsis patients were retrospectively collected from July 2018 to December 2022.The performances of the SIC and SAC were assessed to identify overt-DIC on days 1,3,7,or 14.The SIC status or SIC score on day 1,the SAC status or SAC score on day 1,and the sum of the SIC or SAC scores on days 1 and 3 were compared in terms of their ability to identify pre-DIC.The SIC or SAC status on day 1 was evaluated as a pre-DIC indicator for anticoagulant initiation.RESULTS:On day 1,the incidences of coagulopathy according to overt-DIC,SIC and SAC criteria were 11.7%,22.0%and 31.5%,respectively.The specificity of SIC for identifying overt-DIC was significantly higher than that of the SAC criteria from day 1 to day 14(P<0.05).On day 1,the SIC score with a cut-off value>3 had a significantly higher sensitivity(72.00%)and area under the curve(AUC)(0.69)in identifying pre-DIC than did the SIC or SAC status(sensitivity:SIC status 44.00%,SAC status 52.00%;AUC:SIC status 0.62,SAC status 0.61).The sum of the SIC scores on days 1 and 3 had a higher AUC value for identifying the pre-DIC state than that of SAC(0.79 vs.0.69,P<0.001).Favorable effects of anticoagulant therapy were observed in SIC(adjusted hazard ratio[HR]=0.216,95%confidence interval[95%CI]:0.060–0.783,P=0.018)and SAC(adjusted HR=0.146,95%CI:0.041–0.513,P=0.003).CONCLUSION:The SIC and SAC seem to be valuable for predicting overt-DIC.The sum of SIC scores on days 1 and 3 has the potential to help identify pre-DIC.
基金financially supported by National Natural Science Foundation of China (21701083)Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX20_3137)。
文摘Metal-organic frameworks(MOFs) are becoming more and more popular as the fillers in polymer electrolytes in recent years. In this study, a series of MOFs(NH_(2)-MIL-101(Fe), MIL-101(Fe), activated NH_(2)-MIL-101(Fe) and activated MIL-101(Fe)) were synthesized and added to PEO-based solid composite electrolytes(SCEs). Furthermore, the role of the —NH_(2) groups and open metal sites(OMSs) were both examined. Different ratios of MOFs vs polymers were also studied by the electrochemical characterizations. At last, we successfully designed a novel solid composite electrolyte containing activated NH_(2)-MIL-101(Fe),PEO, Li TFSI and PVDF for the high-performance all-solid-state lithium-metal batteries. This work might provide new insight to understand the interactions between polymers and functional groups or OMSs of MOFs better.
基金financially supported by National Natural Science Foundation of China (No.21701083)。
文摘All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance caused by the poor Li~+transport kinetics due to the solid-solid contacts between the electrodes and the solid-state electrolytes.Herein,a novel gel polymer electrolyte(UPP-5)composed of ionic liquid incorporated metal-organic frameworks nanoparticles(IL@MOFs)is designed,it exhibits satisfying electrochemical performances,consisting of an excellent electrochemical stability window(5.5 V)and an improved Li^(+)transference number of 0.52.Moreover,the Li/UPP-5/LiFePO_(4) full cells present an ultra-stable cycling performance at 0.2C for over 100 cycles almost without any decay in capacities.This study might provide new insight to create an effective Li^(+)conductive network for the development of all-solid-state lithium-ion batteries.
基金Supported by the National Key Research and Development Program(Nos.2018YFC0311003,2017YFE0103100)the National Natural Science Foundation of China(Nos.81903534,81773628,81741165)the HighLevel Talent Special Support Plan of Zhejiang Province(No.2019R52009)。
文摘A sulfated galactoftucan designated as UpG was obtained from the brown algae Undaria pinnatifida by calcium chloride extraction.Chemical analyses showed that UpG is composed of galactose and fucose at a high sulfation level.Low-molecular weight UpGP-0.5 was prepared from UpG through acid hydrolysis for structure characterization.The backbones of UpG are determined to beα-(1,3)-Fuc,α-(1,4)-Gal,α-(1,3)-Gal,andα-(1,6)-Gal by GC-MS,FT-IR,NMR,and LC-MS analyses.Sulfate groups are modified at C2 and/or C4 of fucose and C3 and/or C4 of galactose.UpG could partially lower blood sugar and serum lipid levels in type 2 diabetic mice.Moreover,UpG treatment regulates the abundance of some specific gut microbiota,such as enriching the abundance of Muribaculum and Christensenellaceae,and reducing that of Bilophila,Tannerellaceae,Candidatus Saccharimonas and Anaerotruncus.The findings characterized the detailed structure of a sulfated galactofucan and investigated its potential for the treatment of type 2 diabetes mellitus.
基金supported by the National Natural Science Foundation of China(Grant Nos.62175198)the Natural Science Foundation of Fujian Province of China(Grant No.2020J02010)+1 种基金the Joint Funds for the innovation of science and Technology,Fujian province(Grant No.2019Y9046)the Fundamental Research Funds for the Central Universities(Grant No.xzy022020037).
文摘Red blood cells(RBCs)have recently emerged as promosing candidates for cancer treatment in terms of relieving tumor hypoxia and inducing oxidative damage against cancer cells,but they are still far from satisfactory due to their limited oxygen transport and reactive oxygen species generation rate in tumor tissue.Herein,artificial RBCs(designated FTP@RBCM)with radical storm production ability were developed for oncotherapy through multidimensional reactivity pathways of Fe-protoporphyrin-based hybrid metal-organic frameworks(FTPs,as the core),including photodynamic/chemodynamic-like,catalase-like and glutathione peroxidase-like activities.Meanwhile,owing to the advantages of long circulation abilities of RBCs provided by their cell membranes(RBCMs),FTP with a surface coated with RBCMs(FTP@RBCM)could enormously accumulate at tumor site to achieve remarkably enhanced therapeutic efficiency.Intriguingly,this ROS-mediated dynamic therapy was demonstrated to induce acute local inflammation and high immunogenic cancer death,which evoked a systemic antitumor immune response when combined with the newly identified T cell immunoglobulin and mucin-containing molecule 3(Tim-3)checkpoint blockade,leading to not only effective elimination of primary tumors but also an abscopal effect of growth suppression of distant tumors.Therefore,such RBC-mimic nanocatalysts with multidimensional catalytic capacities might provide a promising new insight into synergistic cancer treatment.
基金the National Natural Science Fund of China(81600196)grants from Beijing key laboratory of metabolic disorder related cardiovascular disease.
文摘This work aimed to study the beneficial role of human umbilical cord blood-derived mesenchymal stem cellconditioned medium(MSC-CM)in hypoxia-induced apoptosis in H9c2 cardiomyoblasts,in which the serine/heroine kinases(Akt)pathway would be involved.For this,CM was collected by culturing MSCs in serum-free DMEM medium for 24 h,and paracrine factors were analyzed by protein chip.H9c2 cells were divided into the following groups:control group,hypoxia group,MSC-CM intervention group(CM group),MSC-CM+Akt phosphorylation inhibitor(LY294002)group(LY group).Apoptosis of the H9c2 cells was tested with chromatin dye Hoechst 33342 and FITC-conjugated Annexin V apoptosis detection kit by flow cytometer after a hypoxia/serum deprivation(H/SD)for 24 h.The apoptosis-related proteins were evaluated by Western blot.MSC-CM displayed significantly elevated levels of growth factors,anti-inflammatory,and anti-apoptosis cytokines.On Hoechst 33342 apoptosis staining,the H9c2 cell morphology displayed a lower proportion of apoptosis in the CM group than those in the hypoxia group,while apoptosis was increased in LY group.Flow cytometer analysis revealed the apoptosis ratio in the CM group was lower than the hypoxia group(12.34±2.00%vs.21.73±2.58%,p<0.05),while the LY group was significantly higher(22.54±3.89%).Active caspase-3 expression was increased in hypoxia group than control group(p<0.05),but decreased in CM group(p<0.01).Umbilical cord blood-derived mesenchymal stem cell-conditioned media secrete multiple paracrine factors that are able to inhibit hypoxia-induced H9c2 cardiomyoblasts apoptosis,and in which the activation of Akt phosphorylation is involved to achieve the protective effect.
基金Supported by the National Key Research and Development Program of China(No.2016YFA0601301)the National Natural Science Foundation of China(No.41876018)the Tianjin Natural Science Foundation(No.19JCZDJC40600)。
文摘The 22-year(1998-2019)surface seawater dimethylsulfi de(DMS)concentrations in the Yellow Sea(YS)were hindcasted based on satellite sea surface temperature(SST)and chlorophyll-a(Chl-a)data using a generalized additive mixed model(GAMM).A continuous monthly dataset of DMS concentration in the YS was obtained after using the data interpolation empirical orthogonal function(DINEOF)to reconstruct missing information in the dataset.Then,the interannual DMS variability in the YS was analyzed.The results indicated that the monthly climatological DMS concentration in the YS was 3.61 nmol/L.DMS concentrations in the spring and summer were signifi cantly higher than those in the autumn and winter.DMS concentrations were highest in coastal YS waters and lowest primarily in off shore YS waters.Interannual DMS variability between 1998 and 2019 was subdivided into two inverse phases:with the exception of the central YS,DMS increased before the turning point and decreased after.The turning point in interannual DMS variation was earlier in the inshore YS as compared to the central YS.Spectrum analysis identifi ed some signifi cant patterns of interannual variation in the DMS anomaly in the YS.Chl a appeared to be the main factor infl uencing interannual trends in DMS in the YS.Interannual DMS variability was under the joint control of Chl a and SST.However,short-term interannual DMS variation(2-3 years)was primarily related to SST,while longer term interannual DMS variation(6-8 years)was signifi cantly correlated with Chl a and SST.
基金supported by the West Light Foundation of the Chinese Academy of Sciences(awarded to Dr.Hu Liu in 2018)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(awarded to Dr.Hu Liu in 2016)
文摘Landscapes of the mountainous regions in northwestern China comprise a unique pattern of vegetation,consisting of a mosaic of grassland and shrub-forest.Forests generally self-organize into ordered structures and coalesce into blocks on north-facing slopes or stripes along southeast-facing slopes,with Picea crassifolia being the most representative and dominant tree species.We investigated the tree-water status and soil-moisture dynamics at a forest site(Guantan)of the Qilian Mountains in northwest China.The 30-minute-interval measurements of tree-sap flow during the growing season of 2008 are presented,and the potential functional relations between tree transpiration and environmental factors are evaluated.Soil moisture and solar energy were identified as the most influential factors,explaining more than 70%of the variance in sap flow.Based on field measurements obtained at the forest site,a stochastic model of soil-moisture dynamics was tested;and the steady-state probability density functions(PDFs)of the long-term soil-moisture dynamics and static tree-water stress were estimated using the validated model and parameters.We found that the model reproduced measured soil moisture well,despite all the simplifying assumptions.The generated PDF of long-term soil moisture was relatively open,with middle to low average values;and the calculated density of the static tree-water stress at the forest site was largely concentrated between 0 and 0.6,suggesting a moderate water-stress situation in most cases.We argue that both water and energy are limiting factors for vegetation at the forest site.In addition,the tradeoff between reduced evapotranspiration(ET)from limited solar energy and increased soil-moisture availability may create a stressed but tolerable environment and,in turn,produce a relatively constant ecological niche favorable to Picea crassifolia growth.
基金Project supported by the National Natural Science Foundation of China(Grant No.62071180)Fundamental Research Funds for the Central Universities,China(Grant No.2020MS099)。
文摘Atmospheric effects have significant influence on the performance of a free-space optical continuous variable quantum key distribution(CVQKD)system.In this paper,we investigate how the transmittance,excess noise and interruption probability caused by atmospheric effects affect the secret-key rate(SKR)of the CVQKD.Three signal wavelengths,two weather conditions,two detection schemes,and two types of attacks are considered in our investigation.An expression aims at calculating the interruption probability is proposed based on the Kolmogorov spectrum model.The results show that a signal using long working wavelength can propagate much further than that of using short wavelength.Moreover,as the wavelength increases,the influence of interruption probability on the SKR becomes more significant,especially within a certain transmission distance.Therefore,interruption probability must be considered for CVQKD by using long-signal wavelengths.Furthermore,different detection schemes used by the receiver will result in different transmission distances when subjected to individual attacks and collective attacks,respectively.
基金supported by National Natural Science Foundation of China(grant Nos.21701083,22279112)Natural Science Foundation of Hebei Province(grant No.B2022203018).
文摘For several decades,the promise of implementing of lithium(Li)metal anodes has been regarded as the"holy grail"for Li-based batteries.Herein,we have proposed a facile design of a carbon fiber cloth(CFC)framework coated with SnO_(2)nanoparticles through a hydrothermal process,which served as a reliable host for prestoring molten Li to produce a CFC@SnO_(2)@Li composite anode.XRD,TEM,HRTEM,XPS and different electrochemical characterizations were carried out.Owing to the synergetic effects of the 3D conductive CFC and the coated lithiophilic SnO_(2)nanoparticles,the designed CFC@SnO_(2)@Li electrodes can buffer the volume changes and reduce the local current density,thus suppress the Li dendrites during cycling.Consequently,the CFC@SnO_(2)electrodes showed a high and stable CE of 98.6%for 1000 cycles at a current density of 1 mA cm^(-2)(1 mAh cm^(-2)).What is more,at a high current density of 5 mA cm^(-2)and a high areal capacity of 5 mAh cm^(-2),the symmetric cell displayed relatively low overpotential and long cycling lifetime of 1600 h.The results confirm its great potential as lithium metal anodes in practical battery applications.
基金Shanghai Municipal Science and Technology Major Project(2017SHZDZX01)the National Natural Science Foundation of China(12034005,12122403,11827808,11874289)+3 种基金the China Postdoctoral Science Foundation(2021M690709)the Shanghai Science and Technology Innovation Plan(20S31901300)the Shanghai Rising-Star Program(21QC1400100)the China Scholarship Council(202106100122).
文摘This study aims to introduce the protocol for ultrasonic backscatter measurements of musculoskeletal properties based on a novel ultrasonic backscatter bone diagnostic(UBBD)instrument.Dual-energy X-ray absorptiometry(DXA)can be adopted to measure bone mineral density(BMD)in the hip,spine,legs and the whole body.The muscle and fat mass in the legs and the whole body can be also calculated by DXA body composition analysis.Based on the proposed protocol for backscatter measurements by UBBD,ultrasonic backscatter signals can be measured in vivo,deriving three backscatter parameters[apparent integral backscatter(AIB),backscatter signal peak amplitude(BSPA)and the corresponding arrival time(BSPT)].AIB may provide important diagnostic information about bone properties.BSPA and BSPT may be important indicators of muscle and fat properties.The standardized backscatter measurement protocol of the UBBD instrument may have the potential to evaluate musculoskeletal characteristics,providing help for promoting the application of the backscatter technique in the clinical diagnosis of musculoskeletal disorders(MSDs),such as osteoporosis and muscular atrophy.
基金supported by National Natural Science Foundation of China(grant Nos.21701083,22179054)The Ministry of Science and Technology of the People's Republic of China(grant No.G2023014022L)Jiangsu Provincial Key Research and Development Program(grant No.BZ2023010).
文摘For all-solid-state lithium batteries(ASSLBs),polymer-blended solid composite electrolytes(SCEs)have drawn wide interest owing to their significance in improving the interfacial solid-solid contacts and inhibiting the growth of lithium dendrites.In this work,SCEs based on PVDF-HFP/PMMA matrix containing MOFs(NH2-MIL-53(Al))and LiTFSI were designed and synthesized employing an easy solution casting method.The synthesized samples were examined by XRD,SEM,EDS,and electrochemical tests.It was found that MPP-2 SCE not only has excellent ionic conductivity at 60℃ of 5.54×10^(−4) S cm^(−1),but also exhibits superior interfacial compatibility in Li||Li symmetric batteries,which can constantly cycle for about 800 h at 0.1 mA cm^(−2) with no short-circuiting.The assembled Li|MPP-2|LiFePO4 cell exhibited a first discharge specific capacity of up to 157.1 mAh g^(−1) at 60℃ and 0.2 C.This work may help to further advance the progress of ASSLBs in the future.
基金the National Natural Science Foundation of China(Nos.21701083 and 22179054).
文摘Comprehensive Summary This work systematically reviews recent progresses in the applications of MOF-derived materials modified 3D porous conductive framework as hosts for uniform lithium deposition in LMBs.A series of commonly used lithiophilic materials and several kinds of representative MOF-derivation-modified 3D hosts as lithium metal anode(LMA)are presented.Finally,the challenges and future development of employing MOF-derived materials to modify the 3D porous conductive framework for LMA are included.
基金supported by the National Natural Science Foundation of China(Nos.21875028 and 22288101)Liaoning Revitalization Talents Program(No.XLYC1902045)the Science and Technology Innovation Fund of Dalian(No.2020JJ26GX030).
文摘Anisotropic nanoparticles,giving rise to a large number of novel physicochemical properties and functionalities,have provoked increasing attentions in nanoscience and nanotechnology.The remained challenge is to develop synthetic methods for the fabrication of anisotropic nanoparticles with less symmetry under the principle of minimum surface free energy.Here,we established a crystallization-assisted asymmetric assembly method for the synthesis of anisotropic polymer nanocrescents and their carbonaceous analogues by using triblock copolymer F127 and octadecanol in aqueous solution.With the aid of molecular dynamics(MD)simulation,we demonstrate that the observed crescent structure is caused by asymmetry distribution of octadecanol crystal within the hydrophobic core of F127 micelles,via the formation of intermediate elliptic micelles bearing hydrophobic ends that further fuse with each other end-to-end at an angle into curing nanocrescent morphology.The influences of annealing time,annealing temperature,and mole ratios of precursors that govern the kinetics of the assembly and polymerization process were systematically investigated and a series of polymer nanocrescents with tunable length of~85 to~262 nm and aspect ratio of~1.1 to~3.0 were prepared.The ability to create novel crescent-shaped polymer and carbon nanoparticles and the identification of asymmetric assembly process by combining experiment and simulation study will provide a valuable contribution both to theoretical and technological researches.