Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charg...Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charges(SOCs)has significant implications for reinforcing the thermal safety design of the lithium-ion battery module.This study first investigates the thermal safety boundary(TSB)correspondence at the cells and modules level under the guidance of a newly proposed concept,safe electric quantity boundary(SEQB).A reasonable thermal runaway propagation(TRP)judgment indicator,peak heat transfer power(PHTP),is proposed to predict whether TRP occurs.Moreover,a validated 3D model is used to quantitatively clarify the TSB at different SOCs from the perspective of PHTP,TR trigger temperature,SOC,and the full cycle life.Besides,three different TRP transfer modes are discovered.The interconversion relationship of three different TRP modes is investigated from the perspective of PHTP.This paper explores the TSB of LIBs under different SOCs at both cell and module levels for the first time,which has great significance in guiding the thermal safety design of battery systems.展开更多
This work extensively investigates the thermal characteristic evolution of lithium-ion batteries under different degradation paths,and the evolution mechanism through multi-angle characterization is revealed.Under dif...This work extensively investigates the thermal characteristic evolution of lithium-ion batteries under different degradation paths,and the evolution mechanism through multi-angle characterization is revealed.Under different degradation paths,the evolution trend of temperature rise rate remains unchanged with respect to depth of discharge during the adiabatic discharge process,albeit to varying degrees of alteration.The temperature rise rate changes significantly with aging during the adiabatic discharge process under low-temperature cycling and high-rate cycling paths.The total heat generation rate,irreversible heat generation rate,and reversible heat generation rate exhibit similar evolution behavior with aging under different degradation paths.The interval range of endothermic process of reversible electrochemical reactions increases and the contribution of irreversible heat to the total heat increases with aging.To further standardize the assessment of different degradation paths on the thermal characteristics,this work introduces the innovative concept of“Ampere-hour temperature rise”.In low-temperature cycling and high-rate cycling paths,the ampere-hour temperature rise increases significantly with aging,particularly accentuated with higher discharge rates.Conversely,in high-temperature cycling and high-temperature storage paths,the ampere-hour temperature rise remains relatively stable during the initial stages of aging,yet undergoes a notable increase in the later stages of aging.The multi-angle characterization reveals distinct thermal evolution behavior under different degradation paths primarily attributed to different behavior changes of severe side reactions,such as lithium plating.The findings provide crucial insights for the safe utilization and management of lithium–ion batteries throughout the whole lifecycle.展开更多
This study examines the effectiveness of adaptive observation experiments using the ensemble transformation sensitivity(ETS) method to improve precipitation forecasts during heavy rainfall events in South China and th...This study examines the effectiveness of adaptive observation experiments using the ensemble transformation sensitivity(ETS) method to improve precipitation forecasts during heavy rainfall events in South China and the Sichuan Basin. High-resolution numerical models are employed to simulate adaptive observations. By identifying the sensitive areas of key weather system positions 42 hours before heavy rainfall events, the adaptive observations improve the prediction of jet streams, strong winds, and shear lines, which are essential for accurate heavy rainfall forecasting. This improvement is reflected in both the precipitation structure and location accuracy within the verification region. In South China, targeted observations enhance rainfall predictions by improving water vapor transport. In the Sichuan Basin, adaptive observations refine water vapor transport and adjust vortex dynamics. This research highlights the importance of accurately predicting shear lines and jet streams for forecasting heavy rainfall in these areas. Overall, this study found that adaptive observation enhances the precipitation forecast skills of the structure and location for heavy rainfall in South China and the Sichuan Basin, emphasizing their potential utility in operational numerical weather prediction.展开更多
Understanding the thermal safety evolution of lithium-ion batteries during high-temperature usage conditions bears significant implications for enhancing the safety management of aging batteries.This work investigates...Understanding the thermal safety evolution of lithium-ion batteries during high-temperature usage conditions bears significant implications for enhancing the safety management of aging batteries.This work investigates the thermal safety evolution mechanism of lithium-ion batteries during high-temperature aging.Similarities arise in the thermal safety evolution and degradation mechanisms for lithium-ion batteries undergoing cyclic aging and calendar aging.Employing multi-angle characterization analysis,the intricate mechanism governing the thermal safety evolution of lithium-ion batteries during high-temperature aging is clarified.Specifically,lithium plating serves as the pivotal factor contributing to the reduction in the self-heating initial temperature.Additionally,the crystal structure of the cathode induced by the dissolution of transition metals and the reductive gas generated during aging attacking the crystal structure of the cathode lead to a decrease in thermal runaway triggering temperature.Furthermore,the loss of active materials and active lithium during aging contributes to a decline in both the maximum temperature and the maximum temperature rise rate,ultimately indicating a decrease in the thermal hazards of aging batteries.展开更多
Unstable rock is a kind of global geological disaster with high frequency. This paper, considering three kinds of combined loads which are gravity, fracture water pressure and seismic force, constructs a unstable rock...Unstable rock is a kind of global geological disaster with high frequency. This paper, considering three kinds of combined loads which are gravity, fracture water pressure and seismic force, constructs a unstable rock mechanics model and it uses a fracture mechanics method to deduce the composite stress intensity factor of the type I - II. Based on the maximum circumferential stress theory, this article calculates the theo-retical fracture angle by triangle universal formula.展开更多
The Industrial Internet is a promising technology combining industrial systems with Internet connectivity to significantly improve the product efficiency and reduce production cost by cooperating with intelligent devi...The Industrial Internet is a promising technology combining industrial systems with Internet connectivity to significantly improve the product efficiency and reduce production cost by cooperating with intelligent devices,in which the advanced computing,big data analysis and intelligent perception techniques have been involved.This paper comprehensively surveys the recent advances of the Industrial Internet,including reference architectures,key technologies,relative applications and future challenges.Reference architectures which have been proposed for different application scenarios and their corresponding characteristics are summarized.Key technologies,such as cloud computing,mobile edge computing,fog computing,which are classified according to different layers in the architecture,are presented to support a variety of applications in the Industrial Internet.Meanwhile,future challenges and research trends are discussed as well to promote further research of the Industrial Internet.展开更多
Efficient fast-charging technology is necessary for the extension of the driving range of electric vehicles.However,lithium-ion cells generate immense heat at high-current charging rates.In order to address this probl...Efficient fast-charging technology is necessary for the extension of the driving range of electric vehicles.However,lithium-ion cells generate immense heat at high-current charging rates.In order to address this problem,an efficient fast charging–cooling scheduling method is urgently needed.In this study,a liquid cooling-based thermal management system equipped with mini-channels was designed for the fastcharging process of a lithium-ion battery module.A neural network-based regression model was proposed based on 81 sets of experimental data,which consisted of three sub-models and considered three outputs:maximum temperature,temperature standard deviation,and energy consumption.Each sub-model had a desirable testing accuracy(99.353%,97.332%,and 98.381%)after training.The regression model was employed to predict all three outputs among a full dataset,which combined different charging current rates(0.5C,1C,1.5C,2C,and 2.5C(1C=5 A))at three different charging stages,and a range of coolant rates(0.0006,0.0012,and 0.0018 kg·s^(-1)).An optimal charging–cooling schedule was selected from the predicted dataset and was validated by the experiments.The results indicated that the battery module’s state of charge value increased by 0.5 after 15 min,with an energy consumption lower than 0.02 J.The maximum temperature and temperature standard deviation could be controlled within 33.35 and 0.8C,respectively.The approach described herein can be used by the electric vehicles industry in real fast-charging conditions.Moreover,optimal fast charging-cooling schedule can be predicted based on the experimental data obtained,that in turn,can significantly improve the efficiency of the charging process design as well as control energy consumption during cooling.展开更多
An energy-storage system comprised of lithium-ion battery modules is considered to be a core component of new energy vehicles,as it provides the main power source for the transmission system.However,manufacturing defe...An energy-storage system comprised of lithium-ion battery modules is considered to be a core component of new energy vehicles,as it provides the main power source for the transmission system.However,manufacturing defects in battery modules lead to variations in performance among the cells used in series or parallel configuration.This variation results in incomplete charge and discharge of batteries and non-uniform temperature distribution,which further lead to reduction of cycle life and battery capacity over time.To solve this problem,this work uses experimental and numerical methods to conduct a comprehensive investigation on the clustering of battery cells with similar performance in order to produce a battery module with improved electrochemical performance.Experiments were first performed by dismantling battery modules for the measurement of performance parameters.The kmeans clustering and support vector clustering(SVC)algorithms were then employed to produce battery modules composed of 12 cells each.Experimental verification of the results obtained from the clustering analysis was performed by measuring the temperature rise in the cells over a certain period,while air cooling was provided.It was found that the SVC-clustered battery module in Category 3 exhibited the best performance,with a maximum observed temperature of 32℃.By contrast,the maximum observed temperatures of the other battery modules were higher,at 40℃for Category 1(manufacturer),36℃for Category 2(manufacturer),and 35℃for Category 4(k-means-clustered battery module).展开更多
We report a simple and effective method to realize desirable interfacial property for inverted planar perovskite solar cells(PSCs)by using small molecule ethanediamine for the construction of a novel polyelectrolyte h...We report a simple and effective method to realize desirable interfacial property for inverted planar perovskite solar cells(PSCs)by using small molecule ethanediamine for the construction of a novel polyelectrolyte hole transport material(P3CT-ED HTM).It is found that P3CT-ED can not only improve the hole transport property of P3CT-K but also improve the crystallinity of adjacent perovskite film.In addition,the introduction of ethanediamine into P3CT realigns the conduction and valence bands upwards,passivates surface defects and reduces nonradiative recombination.As a consequence,compared to P3CT-K hole transport layer(HTL)based devices,the average power conversion efficiency(PCE)is boosted from17.2% to 19.6% for the counterparts with P3CT-ED,with simultaneous enhancement in open circuit voltage and fill factor.The resultant device displays a champion PCE of 20.5% with negligible hysteresis.展开更多
This paper considers a physical layer se-curity model in wireless communications.Two legit-imate users communicate through several relays with the presence of an eavesdropper.We jointly design the relay beamforming we...This paper considers a physical layer se-curity model in wireless communications.Two legit-imate users communicate through several relays with the presence of an eavesdropper.We jointly design the relay beamforming weights and minimize the to-tal relay transmit power,while ensuring users’Qual-ity of Services and preventing the information being eavesdropped at the same time.The problem is a robust optimization problem,because of the imper-fect channel state information from users and relays to the eavesdropper.First the original problem is sim-plified,where the high order robust terms are omit-ted.Then we design an iterative algorithm based on line search,by solving two Quadratically Con-strained Quadratic Programming subproblems and a one-dimensional subproblem.Simulation results indi-cate that the proposed algorithm outperforms the state of the arts.展开更多
Cervical cancer is a major public health concern in China,accounting for almost one-fifth of the global incidence and mortality.The recently prequalified domestic bivalent human papillomavirus(HPV)vaccine offers a pra...Cervical cancer is a major public health concern in China,accounting for almost one-fifth of the global incidence and mortality.The recently prequalified domestic bivalent human papillomavirus(HPV)vaccine offers a practical and feasible preventive measure.In response to the global call for action,the National Health Commission issued an Action Plan to eliminate cervical cancer by 2030,with promotion of the HPV vaccination for school-aged girls as a critical step.Despite this,implementation of the vaccination has been patchy,with very low coverage among eligible girls.To address this,from December 2021 to December 2022,a demonstration project was launched in Shenzhen,Guangdong Province,to promote the inclusion of HPV vaccine in local immunisation programme and to address existing barriers to implementation.Using multiple sources of data,this article presents a case study of the demonstration project,analysing its impact on rolling out HPV vaccination among eligible girls and identifying any challenges encountered during implementation.The demonstration project has shown promising results in increasing the HPV vaccination rate,promoting public awareness and acceptance of the domestic HPV vaccine,and establishing a model for quickly scaling up the vaccination at the municipal level.The success of the project can be attributed to several factors,including strong governmental commitment,sufficient funding,multi-sectoral collaboration,ensured vaccine accessibility and affordability,improved vaccination services,and effective health education and communication strategies.Lessons learned from Shenzhen can provide valuable insights for future advocacy and implementation of the vaccination in other areas of China,but challenges must be addressed to achieve universal coverage.These include addressing vaccine hesitancy,expanding the programme to cover a broader age range,and ensuring consistent quality of vaccination services in primary care facilities.Overcoming these challenges will require innovative strategies,public-private partnerships,and sustained funding and resources.Future research should focus on evaluating the long-term effectiveness of the vaccination programme and identifying contextual factors that may impact its implementation in different settings.Overall,the effective control of cervical cancer in China will rely on the“political will”to ensure the incorporation of preventive interventions into policies and universal programme coverage.展开更多
To the Editor:Biliary atresia(BA)is a rare obliterative cholangiopathy that occurs during infancy in association with destructive liver inflammation and hepatic fibrosis.Although recent studies have shown that transfo...To the Editor:Biliary atresia(BA)is a rare obliterative cholangiopathy that occurs during infancy in association with destructive liver inflammation and hepatic fibrosis.Although recent studies have shown that transforming growth factor-b(TGF-b)plays an important role in liver fibrosis and inflammation in BA,disease mechanisms remain poorly understood.Circular RNAs(circRNAs)are a recently discovered unique class of regulatory RNA molecules with high specificity.As previous evidence links circRNAs to the regulation of the TGF-b inflammatory signaling pathway,we further investigated the potential regulatory roles of circRNAs in BA and found novel insights into BA pathogenesis.展开更多
Further applications of electric vehicles(EVs)and energy storage stations are limited because of the thermal sensitivity,volatility,and poor durability of lithium-ion batteries(LIBs),especially given the urgent requir...Further applications of electric vehicles(EVs)and energy storage stations are limited because of the thermal sensitivity,volatility,and poor durability of lithium-ion batteries(LIBs),especially given the urgent requirements for all-climate utilization and fast charging.This study comprehensively reviews the thermal characteristics and management of LIBs in an all-temperature area based on the performance,mechanism,and thermal management strategy levels.展开更多
Wastewater management and energy/resource recycling have been extensively investigated via photo(electro)catalysis.Although both operation processes are driven effectively by the same interfacial charge,each system is...Wastewater management and energy/resource recycling have been extensively investigated via photo(electro)catalysis.Although both operation processes are driven effectively by the same interfacial charge,each system is practiced separately since they require very different reaction conditions.In this review,we showcase the recent advancements in photo(electro)catalytic process that enables the wastewater treatment and simultaneous energy/resource recovery(WT-ERR).Various literatures based on photo(electro)catalysis for wastewater treatment coupled with CO_(2)conversion,H_(2)production and heavy metal recovery are summarized.Besides,the fundamentals of photo(electro)catalysis and the influencing factors in such synergistic process are also presented.The essential feature of the catalysis lies in effectively utilizing hole oxidation for pollutant degradation and electron reduction for energy/resource recovery.Although in its infancy,the reviewed technology provides new avenue for developing next-generation wastewater treatment process.Moreover,we expect that this review can stimulate intensive researches to rationally design photo(electro)catalytic systems for environmental remediation accompanied with energy and resource recovery.展开更多
Municipal wastewater sludge can be pyrolyzed as biochars to better use nutrients and stabilize carbon compared with other typical technologies,such as landfill and incineration.However,sludge-derived biochars might co...Municipal wastewater sludge can be pyrolyzed as biochars to better use nutrients and stabilize carbon compared with other typical technologies,such as landfill and incineration.However,sludge-derived biochars might contain large amounts of potentially toxic elements(PTEs),such as Zn,Cu,Cr,Ni,Pb,and As.The stability of PTEs in biochars might be improved by higher pyrolytic temperatures,which can be further improved by different modifications.Herein,PO4-modification at 300°C and Cl-modification at 700°C were carried out,respectively,to enhance the stability of PTEs.Various leaching tests have been performed to assess the stability of PTEs in biochars,including the synthetic precipitation leaching procedure(SPLP),toxicity characteristic leaching procedure(TCLP),diethylenetriamine pentaacetate(DTPA)extraction,and in vitro simple bioaccessibility extraction test(SBET).The morphological structure,elemental mapping,and mineral formation of the pristine and modified biochars were studied by scanning electron microscopy–energy-dispersive X-ray spectroscopy(SEM–EDS)and X-ray diffraction(XRD).Our results suggested that the leachability,mobility,plant-availability,and bioaccessibility of most PTEs were decreased by pyrolysis,yet the total contents of PTEs were elevated,especially at 700°C.Generally,modification by phosphates and MgCl2 enhanced the stability of PTEs in biochars.Nevertheless,it should be noted that higher bioaccessibility of PTEs was observed in biochars of P-modification than Cl-modification,which is associated with the dissolution of phosphate precipitates under acidic conditions(pH<2).Additionally,Cl-modification leads to higher plant-available Zn and Cu and bioaccessible Zn compared with the unmodified biochar produced at 700°C.展开更多
Detrimental defects on perovskite grain boundaries(GBs)are critical factors that lead to non-radiative recombination and hysteresis.In this work,triazine-graphdiyne(Tra-GD),a nitrogen-rich two-dimensional(2 D)material...Detrimental defects on perovskite grain boundaries(GBs)are critical factors that lead to non-radiative recombination and hysteresis.In this work,triazine-graphdiyne(Tra-GD),a nitrogen-rich two-dimensional(2 D)material,was incorporated into the active layer of perovskite to modify the GBs.Tra-GD was found to distribute evenly over the bulk of the perovskite and has a strong interaction with the Pb^2+ exposed at GBs,which enables it to effectively passivate GB defects and prevent ion migration.The results of Kelvin probe force microscopy and photoluminescence studies proved that the highly conjugated Tra-GD located at GBs could promote charge extraction and transport.Benefiting from defect passivation and more efficient carrier transport,the Tra-GD based device showed less non-radiative recombination loss.Consequently,the resultant device presented negligible hysteresis and yielded a high power conversion efficiency(PCE)of 20.33%in the MAPbI3-based perovskite solar cell.This approach was extended to the FAPbI3 system with a PCE of 21.16%.Our Tra-GD passivation strategy provides a useful approach to effectively improving the device performance and addressing hysteresis issues.展开更多
基金supported by the National Natural Science Foundation of China(No.U20A20310 and No.52176199)sponsored by the Program of Shanghai Academic/Technology Research Leader(No.22XD1423800)。
文摘Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charges(SOCs)has significant implications for reinforcing the thermal safety design of the lithium-ion battery module.This study first investigates the thermal safety boundary(TSB)correspondence at the cells and modules level under the guidance of a newly proposed concept,safe electric quantity boundary(SEQB).A reasonable thermal runaway propagation(TRP)judgment indicator,peak heat transfer power(PHTP),is proposed to predict whether TRP occurs.Moreover,a validated 3D model is used to quantitatively clarify the TSB at different SOCs from the perspective of PHTP,TR trigger temperature,SOC,and the full cycle life.Besides,three different TRP transfer modes are discovered.The interconversion relationship of three different TRP modes is investigated from the perspective of PHTP.This paper explores the TSB of LIBs under different SOCs at both cell and module levels for the first time,which has great significance in guiding the thermal safety design of battery systems.
基金This work is supported by the National Natural Science Foundation of China(NSFC,Nos.52176199,and U20A20310)supported by the Program of Shanghai Academic/Technology Research Leader(22XD1423800).
文摘This work extensively investigates the thermal characteristic evolution of lithium-ion batteries under different degradation paths,and the evolution mechanism through multi-angle characterization is revealed.Under different degradation paths,the evolution trend of temperature rise rate remains unchanged with respect to depth of discharge during the adiabatic discharge process,albeit to varying degrees of alteration.The temperature rise rate changes significantly with aging during the adiabatic discharge process under low-temperature cycling and high-rate cycling paths.The total heat generation rate,irreversible heat generation rate,and reversible heat generation rate exhibit similar evolution behavior with aging under different degradation paths.The interval range of endothermic process of reversible electrochemical reactions increases and the contribution of irreversible heat to the total heat increases with aging.To further standardize the assessment of different degradation paths on the thermal characteristics,this work introduces the innovative concept of“Ampere-hour temperature rise”.In low-temperature cycling and high-rate cycling paths,the ampere-hour temperature rise increases significantly with aging,particularly accentuated with higher discharge rates.Conversely,in high-temperature cycling and high-temperature storage paths,the ampere-hour temperature rise remains relatively stable during the initial stages of aging,yet undergoes a notable increase in the later stages of aging.The multi-angle characterization reveals distinct thermal evolution behavior under different degradation paths primarily attributed to different behavior changes of severe side reactions,such as lithium plating.The findings provide crucial insights for the safe utilization and management of lithium–ion batteries throughout the whole lifecycle.
基金jointly supported by the Guangdong Province University Student Innovation and Entrepreneurship Project (580520049)the Guangdong Ocean University Scientific Research Startup Fund (R20021)the Key Laboratory of Plateau and Basin Rainstorm and Drought Disasters in Sichuan Province Open Research Fund (SZKT201902)。
文摘This study examines the effectiveness of adaptive observation experiments using the ensemble transformation sensitivity(ETS) method to improve precipitation forecasts during heavy rainfall events in South China and the Sichuan Basin. High-resolution numerical models are employed to simulate adaptive observations. By identifying the sensitive areas of key weather system positions 42 hours before heavy rainfall events, the adaptive observations improve the prediction of jet streams, strong winds, and shear lines, which are essential for accurate heavy rainfall forecasting. This improvement is reflected in both the precipitation structure and location accuracy within the verification region. In South China, targeted observations enhance rainfall predictions by improving water vapor transport. In the Sichuan Basin, adaptive observations refine water vapor transport and adjust vortex dynamics. This research highlights the importance of accurately predicting shear lines and jet streams for forecasting heavy rainfall in these areas. Overall, this study found that adaptive observation enhances the precipitation forecast skills of the structure and location for heavy rainfall in South China and the Sichuan Basin, emphasizing their potential utility in operational numerical weather prediction.
基金supported by the National Natural Science Foundation of China(NSFC,Nos.52176199,and U20A20310)supported by the Program of Shanghai Academic/Technology Research Leader(22XD1423800)。
文摘Understanding the thermal safety evolution of lithium-ion batteries during high-temperature usage conditions bears significant implications for enhancing the safety management of aging batteries.This work investigates the thermal safety evolution mechanism of lithium-ion batteries during high-temperature aging.Similarities arise in the thermal safety evolution and degradation mechanisms for lithium-ion batteries undergoing cyclic aging and calendar aging.Employing multi-angle characterization analysis,the intricate mechanism governing the thermal safety evolution of lithium-ion batteries during high-temperature aging is clarified.Specifically,lithium plating serves as the pivotal factor contributing to the reduction in the self-heating initial temperature.Additionally,the crystal structure of the cathode induced by the dissolution of transition metals and the reductive gas generated during aging attacking the crystal structure of the cathode lead to a decrease in thermal runaway triggering temperature.Furthermore,the loss of active materials and active lithium during aging contributes to a decline in both the maximum temperature and the maximum temperature rise rate,ultimately indicating a decrease in the thermal hazards of aging batteries.
文摘Unstable rock is a kind of global geological disaster with high frequency. This paper, considering three kinds of combined loads which are gravity, fracture water pressure and seismic force, constructs a unstable rock mechanics model and it uses a fracture mechanics method to deduce the composite stress intensity factor of the type I - II. Based on the maximum circumferential stress theory, this article calculates the theo-retical fracture angle by triangle universal formula.
基金the State Major Science and Technology Special Projects(Grant 2018ZX03001023-005)the National Natural Science Foundation of China under Grant No.61831002,61728101,and 61671074the Beijing Natural Science Foundation under Grant No.JQ18016.
文摘The Industrial Internet is a promising technology combining industrial systems with Internet connectivity to significantly improve the product efficiency and reduce production cost by cooperating with intelligent devices,in which the advanced computing,big data analysis and intelligent perception techniques have been involved.This paper comprehensively surveys the recent advances of the Industrial Internet,including reference architectures,key technologies,relative applications and future challenges.Reference architectures which have been proposed for different application scenarios and their corresponding characteristics are summarized.Key technologies,such as cloud computing,mobile edge computing,fog computing,which are classified according to different layers in the architecture,are presented to support a variety of applications in the Industrial Internet.Meanwhile,future challenges and research trends are discussed as well to promote further research of the Industrial Internet.
基金This work was supported by the Program for Huazhong University of Science and Technology(HUST)Academic Frontier Youth Team(2017QYTD04)the Program for HUST Graduate Innovation and Entrepreneurship Fund(2019YGSCXCY037)+2 种基金Authors acknowledge Grant DMETKF2018019 by State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and TechnologyThis study was also financially supported by the Guangdong Science and Technology Project(2016B020240001)the Guangdong Natural Science Foundation(2018A030310150).
文摘Efficient fast-charging technology is necessary for the extension of the driving range of electric vehicles.However,lithium-ion cells generate immense heat at high-current charging rates.In order to address this problem,an efficient fast charging–cooling scheduling method is urgently needed.In this study,a liquid cooling-based thermal management system equipped with mini-channels was designed for the fastcharging process of a lithium-ion battery module.A neural network-based regression model was proposed based on 81 sets of experimental data,which consisted of three sub-models and considered three outputs:maximum temperature,temperature standard deviation,and energy consumption.Each sub-model had a desirable testing accuracy(99.353%,97.332%,and 98.381%)after training.The regression model was employed to predict all three outputs among a full dataset,which combined different charging current rates(0.5C,1C,1.5C,2C,and 2.5C(1C=5 A))at three different charging stages,and a range of coolant rates(0.0006,0.0012,and 0.0018 kg·s^(-1)).An optimal charging–cooling schedule was selected from the predicted dataset and was validated by the experiments.The results indicated that the battery module’s state of charge value increased by 0.5 after 15 min,with an energy consumption lower than 0.02 J.The maximum temperature and temperature standard deviation could be controlled within 33.35 and 0.8C,respectively.The approach described herein can be used by the electric vehicles industry in real fast-charging conditions.Moreover,optimal fast charging-cooling schedule can be predicted based on the experimental data obtained,that in turn,can significantly improve the efficiency of the charging process design as well as control energy consumption during cooling.
基金This work was supported by the National Natural Science Foundation of China(51675196 and 51721092)the program for HUST Academic Frontier Youth Team(2017QYTD04)+2 种基金The authors acknowledge the grant(DMETKF2018019)from the State Key Lab of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technologythe Sailing Talent Program and the Guangdong University Youth Innovation Talent Project(2016KQNCX053)supported by the Department of Education of Guangdong Provincethe Shantou University Scientific Research Funded Project(NTF16002).
文摘An energy-storage system comprised of lithium-ion battery modules is considered to be a core component of new energy vehicles,as it provides the main power source for the transmission system.However,manufacturing defects in battery modules lead to variations in performance among the cells used in series or parallel configuration.This variation results in incomplete charge and discharge of batteries and non-uniform temperature distribution,which further lead to reduction of cycle life and battery capacity over time.To solve this problem,this work uses experimental and numerical methods to conduct a comprehensive investigation on the clustering of battery cells with similar performance in order to produce a battery module with improved electrochemical performance.Experiments were first performed by dismantling battery modules for the measurement of performance parameters.The kmeans clustering and support vector clustering(SVC)algorithms were then employed to produce battery modules composed of 12 cells each.Experimental verification of the results obtained from the clustering analysis was performed by measuring the temperature rise in the cells over a certain period,while air cooling was provided.It was found that the SVC-clustered battery module in Category 3 exhibited the best performance,with a maximum observed temperature of 32℃.By contrast,the maximum observed temperatures of the other battery modules were higher,at 40℃for Category 1(manufacturer),36℃for Category 2(manufacturer),and 35℃for Category 4(k-means-clustered battery module).
基金supported by the National Natural Science Foundation of China(51672288,21975273)Taishan Scholars Program of Shandong Province,Dalian National Laboratory for Clean Energy(DICP&QIBEBT No.UN201705)+1 种基金Scientific Research Cooperation Foundation of Qingdao Institute of Bioenergy and Bioprocess TechnologyQingdao Postdoctoral Application Research Project(Project 2018183,2018186)。
文摘We report a simple and effective method to realize desirable interfacial property for inverted planar perovskite solar cells(PSCs)by using small molecule ethanediamine for the construction of a novel polyelectrolyte hole transport material(P3CT-ED HTM).It is found that P3CT-ED can not only improve the hole transport property of P3CT-K but also improve the crystallinity of adjacent perovskite film.In addition,the introduction of ethanediamine into P3CT realigns the conduction and valence bands upwards,passivates surface defects and reduces nonradiative recombination.As a consequence,compared to P3CT-K hole transport layer(HTL)based devices,the average power conversion efficiency(PCE)is boosted from17.2% to 19.6% for the counterparts with P3CT-ED,with simultaneous enhancement in open circuit voltage and fill factor.The resultant device displays a champion PCE of 20.5% with negligible hysteresis.
基金National Natural Sci-ence Foundation of China(Grant No.11771056 and 11871115)the Young Elite Scientists Sponsor-ship Program by CAST(Grant No.2017QNRC001).
文摘This paper considers a physical layer se-curity model in wireless communications.Two legit-imate users communicate through several relays with the presence of an eavesdropper.We jointly design the relay beamforming weights and minimize the to-tal relay transmit power,while ensuring users’Qual-ity of Services and preventing the information being eavesdropped at the same time.The problem is a robust optimization problem,because of the imper-fect channel state information from users and relays to the eavesdropper.First the original problem is sim-plified,where the high order robust terms are omit-ted.Then we design an iterative algorithm based on line search,by solving two Quadratically Con-strained Quadratic Programming subproblems and a one-dimensional subproblem.Simulation results indi-cate that the proposed algorithm outperforms the state of the arts.
文摘Cervical cancer is a major public health concern in China,accounting for almost one-fifth of the global incidence and mortality.The recently prequalified domestic bivalent human papillomavirus(HPV)vaccine offers a practical and feasible preventive measure.In response to the global call for action,the National Health Commission issued an Action Plan to eliminate cervical cancer by 2030,with promotion of the HPV vaccination for school-aged girls as a critical step.Despite this,implementation of the vaccination has been patchy,with very low coverage among eligible girls.To address this,from December 2021 to December 2022,a demonstration project was launched in Shenzhen,Guangdong Province,to promote the inclusion of HPV vaccine in local immunisation programme and to address existing barriers to implementation.Using multiple sources of data,this article presents a case study of the demonstration project,analysing its impact on rolling out HPV vaccination among eligible girls and identifying any challenges encountered during implementation.The demonstration project has shown promising results in increasing the HPV vaccination rate,promoting public awareness and acceptance of the domestic HPV vaccine,and establishing a model for quickly scaling up the vaccination at the municipal level.The success of the project can be attributed to several factors,including strong governmental commitment,sufficient funding,multi-sectoral collaboration,ensured vaccine accessibility and affordability,improved vaccination services,and effective health education and communication strategies.Lessons learned from Shenzhen can provide valuable insights for future advocacy and implementation of the vaccination in other areas of China,but challenges must be addressed to achieve universal coverage.These include addressing vaccine hesitancy,expanding the programme to cover a broader age range,and ensuring consistent quality of vaccination services in primary care facilities.Overcoming these challenges will require innovative strategies,public-private partnerships,and sustained funding and resources.Future research should focus on evaluating the long-term effectiveness of the vaccination programme and identifying contextual factors that may impact its implementation in different settings.Overall,the effective control of cervical cancer in China will rely on the“political will”to ensure the incorporation of preventive interventions into policies and universal programme coverage.
基金supported by the National Key Research and Development Program of China(2020YFA0309300)the Natural Science Foundation of Tianjin(20JCZDJC00560 and 20JCJQJC00210)+2 种基金the National Natural Science Foundation of China(NSFC,11974191 and 12127803)the 111 Project(B07013)the“Fundamental Research Funds for the Central Universities”,Nankai University(91923139,63213040,C029211101,C02922101,and ZB22000104)。
基金supported by Sanming Project of Medicine in Shenzhen(No.SZSM201812055)National Natural Science Foundation of China(No.81770512)Research topic on academic and postgraduate education in China(No.2020MSA126).
文摘To the Editor:Biliary atresia(BA)is a rare obliterative cholangiopathy that occurs during infancy in association with destructive liver inflammation and hepatic fibrosis.Although recent studies have shown that transforming growth factor-b(TGF-b)plays an important role in liver fibrosis and inflammation in BA,disease mechanisms remain poorly understood.Circular RNAs(circRNAs)are a recently discovered unique class of regulatory RNA molecules with high specificity.As previous evidence links circRNAs to the regulation of the TGF-b inflammatory signaling pathway,we further investigated the potential regulatory roles of circRNAs in BA and found novel insights into BA pathogenesis.
基金supported by National Natural Science Foundation of China(NSFC)(nos.U20A20310,52176199,and 52076121)sponsored by Program of Shanghai Academic/Technology Research Leader(22XD1423800).
文摘Further applications of electric vehicles(EVs)and energy storage stations are limited because of the thermal sensitivity,volatility,and poor durability of lithium-ion batteries(LIBs),especially given the urgent requirements for all-climate utilization and fast charging.This study comprehensively reviews the thermal characteristics and management of LIBs in an all-temperature area based on the performance,mechanism,and thermal management strategy levels.
基金financially supported by the National Natural Science Foundation of China(Nos.52000097,51878325,51868050 and 51938007)the Natural Science Foundation of Jiangxi Province(Nos.20192BAB213011 and 20192ACBL21046)+1 种基金the Ph.D.research startup foundation of Nanchang Hangkong University(No.EA201802367)the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment(No.SKLPEE-KF202106),Fuzhou University。
文摘Wastewater management and energy/resource recycling have been extensively investigated via photo(electro)catalysis.Although both operation processes are driven effectively by the same interfacial charge,each system is practiced separately since they require very different reaction conditions.In this review,we showcase the recent advancements in photo(electro)catalytic process that enables the wastewater treatment and simultaneous energy/resource recovery(WT-ERR).Various literatures based on photo(electro)catalysis for wastewater treatment coupled with CO_(2)conversion,H_(2)production and heavy metal recovery are summarized.Besides,the fundamentals of photo(electro)catalysis and the influencing factors in such synergistic process are also presented.The essential feature of the catalysis lies in effectively utilizing hole oxidation for pollutant degradation and electron reduction for energy/resource recovery.Although in its infancy,the reviewed technology provides new avenue for developing next-generation wastewater treatment process.Moreover,we expect that this review can stimulate intensive researches to rationally design photo(electro)catalytic systems for environmental remediation accompanied with energy and resource recovery.
基金the financial supports by the National Natural Science Foundation for Young Scientists of China(No.42007142)the Guangdong Basic and Applied Basic Research Foundation(No.2019A1515110927)the Key Scientific and Technological Project of Foshan City(No.2120001008392).
文摘Municipal wastewater sludge can be pyrolyzed as biochars to better use nutrients and stabilize carbon compared with other typical technologies,such as landfill and incineration.However,sludge-derived biochars might contain large amounts of potentially toxic elements(PTEs),such as Zn,Cu,Cr,Ni,Pb,and As.The stability of PTEs in biochars might be improved by higher pyrolytic temperatures,which can be further improved by different modifications.Herein,PO4-modification at 300°C and Cl-modification at 700°C were carried out,respectively,to enhance the stability of PTEs.Various leaching tests have been performed to assess the stability of PTEs in biochars,including the synthetic precipitation leaching procedure(SPLP),toxicity characteristic leaching procedure(TCLP),diethylenetriamine pentaacetate(DTPA)extraction,and in vitro simple bioaccessibility extraction test(SBET).The morphological structure,elemental mapping,and mineral formation of the pristine and modified biochars were studied by scanning electron microscopy–energy-dispersive X-ray spectroscopy(SEM–EDS)and X-ray diffraction(XRD).Our results suggested that the leachability,mobility,plant-availability,and bioaccessibility of most PTEs were decreased by pyrolysis,yet the total contents of PTEs were elevated,especially at 700°C.Generally,modification by phosphates and MgCl2 enhanced the stability of PTEs in biochars.Nevertheless,it should be noted that higher bioaccessibility of PTEs was observed in biochars of P-modification than Cl-modification,which is associated with the dissolution of phosphate precipitates under acidic conditions(pH<2).Additionally,Cl-modification leads to higher plant-available Zn and Cu and bioaccessible Zn compared with the unmodified biochar produced at 700°C.
基金supported by the Natural Science Foundation of China(51672288 and 21975273)Taishan Scholars Program of Shandong Province+2 种基金Youth Innovation Promotion Association of Chinese Academy of Sciences,Dalian National Laboratory for Clean Energy(DICP QIBEBT UN201705)Scientific Research Cooperation Foundation of Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciencesthe support of Qingdao Postdoctoral Application Research Project(2018183 and 2018186)。
文摘Detrimental defects on perovskite grain boundaries(GBs)are critical factors that lead to non-radiative recombination and hysteresis.In this work,triazine-graphdiyne(Tra-GD),a nitrogen-rich two-dimensional(2 D)material,was incorporated into the active layer of perovskite to modify the GBs.Tra-GD was found to distribute evenly over the bulk of the perovskite and has a strong interaction with the Pb^2+ exposed at GBs,which enables it to effectively passivate GB defects and prevent ion migration.The results of Kelvin probe force microscopy and photoluminescence studies proved that the highly conjugated Tra-GD located at GBs could promote charge extraction and transport.Benefiting from defect passivation and more efficient carrier transport,the Tra-GD based device showed less non-radiative recombination loss.Consequently,the resultant device presented negligible hysteresis and yielded a high power conversion efficiency(PCE)of 20.33%in the MAPbI3-based perovskite solar cell.This approach was extended to the FAPbI3 system with a PCE of 21.16%.Our Tra-GD passivation strategy provides a useful approach to effectively improving the device performance and addressing hysteresis issues.