The significant decrease of acid sites caused by alkali metal poisoning is the major factor in the deactivation of commercial V_(2)O_(5)-WO_(3)/TiO_(2)NH_(3)-SCR catalysts.In this work,the solid superacid SO_(4)^(2-)-...The significant decrease of acid sites caused by alkali metal poisoning is the major factor in the deactivation of commercial V_(2)O_(5)-WO_(3)/TiO_(2)NH_(3)-SCR catalysts.In this work,the solid superacid SO_(4)^(2-)-TiO_(2) modified by sulfate radicals,was selected as the catalyst support,which showed superior potassium resistance.The physicochemical properties and K-poisoning resistance of the V_(2)O_(5)-WO_(3)/SO_(4)^(2-)-TiO_(2)(VWSTi) catalyst were carried out by XRD,BET,H2-TPR,NH3-TPD,XPS,in situ DRIFTS and TG.The results pointed out that the introduction of SO_(4)^(2-)significantly increased the NH3-SCR catalytic activity at high temperatures,with an exceptionally high NO_(x) conversion over 90% between 275℃ and 500℃.When 0.5%(mass) K_(2)O was doped on the catalysts,the catalytic performance of the traditional V_(2)O_(5)-WO_(3)/TiO_(2)(VWTi) catalyst decreased significantly,while the VWSTi catalyst could still maintain a NOxconversion over 90%in the range of 300–500℃.The characterizations suggested that the support of SO_(4)^(2-)-TiO_(2) greatly increased the number of acidic sites,thereby enhancing the adsorption capacity of the reactant NH_(3).The results above demonstrated a potential approach to achieve superior potassium resistance for NH3-SCR catalysts using solid superacid.展开更多
A hydrophobic coating of the silica fiber reinforced silica composites(SiO2f/SiO2) was synthesized by sol-gel method using methyltriethoxy-silane(MTES) and boric acid(B(OH)3) as raw materials. The relationship among b...A hydrophobic coating of the silica fiber reinforced silica composites(SiO2f/SiO2) was synthesized by sol-gel method using methyltriethoxy-silane(MTES) and boric acid(B(OH)3) as raw materials. The relationship among boron doping, chemical structure of precursors and durability of hydrophobic coatings was discussed. The Si-O-B and methyl groups were successfully introduced in the gel precursors according to the FT-IR and XPS results. The resins were filled in the internal and surface holes of the SiO2f/SiO2 composites partially or completely, which is beneficial to reduce the physical adsorption of the moisture. In addition, hydroxyl groups of the SiO2f/SiO2 composites reacted with the resins and hydrophobic methyl groups were introduced, leading to the reduction of the chemical adsorption of water. Also, the boron doping was beneficial to enhancing the physical cross-linking between the coating and the SiO2f/SiO2 composites, and improved the adhesion of the coating to the substrate. The results show that the optimal hydrophobic coating with contact angle 130.33°, moisture absorption 0.33% and adhesion level 1 is obtained when the molar ratio of MTES to B(OH)3 is 10:4. The real permittivity of M10B4 is constant in the range of 2.32–2.51 and the dielectric tangent loss is constant in the range of 5.5 × 10-4–8.7 × 10-3. The hydrophobic coating has excellent dielectric properties.展开更多
基金supported by the National Natural Science Foundation of China (22108184)China Postdoctoral Science Foundation (2021TQ0221)+1 种基金the Sichuan Science and Technology Program (2021JDRC0117)Chengdu Science and Technology Program (2021-YF05-00378-SN)。
文摘The significant decrease of acid sites caused by alkali metal poisoning is the major factor in the deactivation of commercial V_(2)O_(5)-WO_(3)/TiO_(2)NH_(3)-SCR catalysts.In this work,the solid superacid SO_(4)^(2-)-TiO_(2) modified by sulfate radicals,was selected as the catalyst support,which showed superior potassium resistance.The physicochemical properties and K-poisoning resistance of the V_(2)O_(5)-WO_(3)/SO_(4)^(2-)-TiO_(2)(VWSTi) catalyst were carried out by XRD,BET,H2-TPR,NH3-TPD,XPS,in situ DRIFTS and TG.The results pointed out that the introduction of SO_(4)^(2-)significantly increased the NH3-SCR catalytic activity at high temperatures,with an exceptionally high NO_(x) conversion over 90% between 275℃ and 500℃.When 0.5%(mass) K_(2)O was doped on the catalysts,the catalytic performance of the traditional V_(2)O_(5)-WO_(3)/TiO_(2)(VWTi) catalyst decreased significantly,while the VWSTi catalyst could still maintain a NOxconversion over 90%in the range of 300–500℃.The characterizations suggested that the support of SO_(4)^(2-)-TiO_(2) greatly increased the number of acidic sites,thereby enhancing the adsorption capacity of the reactant NH_(3).The results above demonstrated a potential approach to achieve superior potassium resistance for NH3-SCR catalysts using solid superacid.
基金supported by the Taishan Scholar Project(No.ts201511080)the National Natural Science Foundation of China(Nos.51672059,51172050,51102060 and 51302050)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(No.HIT.NSRIF.2014129)
文摘A hydrophobic coating of the silica fiber reinforced silica composites(SiO2f/SiO2) was synthesized by sol-gel method using methyltriethoxy-silane(MTES) and boric acid(B(OH)3) as raw materials. The relationship among boron doping, chemical structure of precursors and durability of hydrophobic coatings was discussed. The Si-O-B and methyl groups were successfully introduced in the gel precursors according to the FT-IR and XPS results. The resins were filled in the internal and surface holes of the SiO2f/SiO2 composites partially or completely, which is beneficial to reduce the physical adsorption of the moisture. In addition, hydroxyl groups of the SiO2f/SiO2 composites reacted with the resins and hydrophobic methyl groups were introduced, leading to the reduction of the chemical adsorption of water. Also, the boron doping was beneficial to enhancing the physical cross-linking between the coating and the SiO2f/SiO2 composites, and improved the adhesion of the coating to the substrate. The results show that the optimal hydrophobic coating with contact angle 130.33°, moisture absorption 0.33% and adhesion level 1 is obtained when the molar ratio of MTES to B(OH)3 is 10:4. The real permittivity of M10B4 is constant in the range of 2.32–2.51 and the dielectric tangent loss is constant in the range of 5.5 × 10-4–8.7 × 10-3. The hydrophobic coating has excellent dielectric properties.