Charge density wave(CDW) in kagome materials with the geometric frustration is able to carry unconventional characteristics.Recently, a CDW has been observed below the antiferromagnetic order in kagome FeGe, in which ...Charge density wave(CDW) in kagome materials with the geometric frustration is able to carry unconventional characteristics.Recently, a CDW has been observed below the antiferromagnetic order in kagome FeGe, in which magnetism and CDW are intertwined to form an emergent quantum ground state. However, the CDW is only short-ranged and the structural modulation originating from it has yet to be determined experimentally. Here we realize a long-range CDW order by post-annealing process,and resolve the structure model through single crystal X-ray diffraction. Occupational disorder of Ge resulting from short-range CDW correlations above T_(CDW) is identified from structure refinements. The partial dimerization of Ge along the c axis is unveiled to be the dominant distortion for the CDW. Occupational disorder of Ge is also proved to exist in the CDW phase due to the random selection of partially dimerized Ge sites. Our work provides useful insights for understanding the unconventional nature of the CDW in FeGe.展开更多
基金the National Natural Science Foundation of China (Grant No.12204298)the National Natural Science Foundation of China (Grant No.12074242)+4 种基金the National Natural Science Foundation of China (Grant No.12174334)the National Natural Science Foundation of China (Grant Nos.52272265,U1932217,11974246,and 12004252)the Science and Technology Commission of Shanghai Municipality (Grant No.21JC1402600)the Zhejiang Provincial Natural Science Foundation of China (Grant No.LQ23A040009)supported by the Deutsche Forschungsgemeinschaft (DFG,German Research Foundation) (Grant No.406658237)。
文摘Charge density wave(CDW) in kagome materials with the geometric frustration is able to carry unconventional characteristics.Recently, a CDW has been observed below the antiferromagnetic order in kagome FeGe, in which magnetism and CDW are intertwined to form an emergent quantum ground state. However, the CDW is only short-ranged and the structural modulation originating from it has yet to be determined experimentally. Here we realize a long-range CDW order by post-annealing process,and resolve the structure model through single crystal X-ray diffraction. Occupational disorder of Ge resulting from short-range CDW correlations above T_(CDW) is identified from structure refinements. The partial dimerization of Ge along the c axis is unveiled to be the dominant distortion for the CDW. Occupational disorder of Ge is also proved to exist in the CDW phase due to the random selection of partially dimerized Ge sites. Our work provides useful insights for understanding the unconventional nature of the CDW in FeGe.