Hyperuricemia(HUA)is a condition associated with a high concentration of uric acid(UA)in the bloodstream and can cause gout and chronic kidney disease.The gut microbiota of patients with gout and HUA is significantly ...Hyperuricemia(HUA)is a condition associated with a high concentration of uric acid(UA)in the bloodstream and can cause gout and chronic kidney disease.The gut microbiota of patients with gout and HUA is significantly altered compared to that of healthy people.This article focused on the complex interconnection between alterations in the gut microbiota and the development of this disorder.Some studies have suggested that changes in the composition,diversity,and activity of microbes play a key role in establishing and progressing HUA and gout pathogenesis.Therefore,we discussed how the gut microbiota contributes to HUA through purine metabolism,UA excretion,and intestinal inflammatory responses.We examined specific changes in the composition of the gut microbiota associated with gout and HUA,highlighting key bacterial taxa and the metabolic pathways involved.Additionally,we discussed the effect of conventional gout treatments on the gut microbiota composition,along with emerging therapeutic approaches that target the gut microbiome,such as the use of probiotics and prebiotics.We also provided insights into a study regarding the gut microbiota as a possible novel therapeutic intervention for gout treatment and dysbiosis-related diagnosis.展开更多
The gut microbiome plays a key role in the pathogenesis and disease activity of inflammatory bowel disease(IBD).While research has focused on the bacterial microbiome,recent studies have shifted towards host genetics ...The gut microbiome plays a key role in the pathogenesis and disease activity of inflammatory bowel disease(IBD).While research has focused on the bacterial microbiome,recent studies have shifted towards host genetics and host-fungal interactions.The mycobiota is a vital component of the gastrointestinal microbial community and plays a significant role in immune regulation.Among fungi,Candida species,particularly Candida albicans(C.albicans),have been extensively studied due to their dual role as gut commensals and invasive pathogens.Recent findings indicate that various strains of C.albicans exhibit consid-erable differences in virulence factors,impacting IBD's pathophysiology.Intestinal fungal dysbiosis and antifungal mucosal immunity may be associated to IBD,especially Crohn's disease(CD).This article discusses intestinal fungal dysbiosis and antifungal immunity in healthy individuals and CD patients.It discusses factors influencing the mycobiome's role in IBD pathogenesis and highlights significant contributions from the scientific community aimed at enhancing understanding of the mycobiome and encouraging further research and targeted intervention studies on specific fungal populations.Our article also provided insights into a recent study by Wu et al in the World Journal of Gastroenterology regarding the role of the gut microbiota in the pathogenesis of CD.展开更多
In this editorial,we examine a paper by Koizumi et al,on the role of peroxisome proliferator-activated receptor(PPAR)agonists in alcoholic liver disease(ALD).The study determined whether elafibranor protected the inte...In this editorial,we examine a paper by Koizumi et al,on the role of peroxisome proliferator-activated receptor(PPAR)agonists in alcoholic liver disease(ALD).The study determined whether elafibranor protected the intestinal barrier and reduced liver fibrosis in a mouse model of ALD.The study also underlines the role of PPARs in intestinal barrier function and lipid homeostasis,which are both affected by ALD.Effective therapies are necessary for ALD because it is a critical health issue that affects people worldwide.This editorial analyzes the possibility of PPAR agonists as treatments for ALD.As key factors of inflammation and metabolism,PPARs offer multiple methods for managing the complex etiology of ALD.We assess the abilities of PPARα,PPARγ,and PPARβ/δagonists to prevent steatosis,inflammation,and fibrosis due to liver diseases.Recent research carried out in preclinical and clinical settings has shown that PPAR agonists can reduce the severity of liver disease.This editorial discusses the data analyzed and the obstacles,advantages,and mechanisms of action of PPAR agonists for ALD.Further research is needed to understand the efficacy,safety,and mechanisms of PPAR agonists for treating ALD.展开更多
There is a critical need to develop animal models to alleviate vaccine and drug development difficulties against zoonotic viral infections.The coronavirus family,which includes severe acute respiratory syndrome corona...There is a critical need to develop animal models to alleviate vaccine and drug development difficulties against zoonotic viral infections.The coronavirus family,which includes severe acute respiratory syndrome coronavirus 1 and severe acute respiratory syndrome coronavirus 2,crossed the species barrier and infected humans,causing a global outbreak in the 21st century.Because humans do not have pre-existing immunity against these viral infections and with ethics governing clinical trials,animal models are therefore being used in clinical studies to facilitate drug discovery and testing efficacy of vaccines.The ideal animal models should reflect the viral replication,clinical signs,and pathological responses observed in humans.Different animal species should be tested to establish an appropriate animal model to study the disease pathology,transmission and evaluation of novel vaccine and drug candidates to treat coronavirus disease 2019.In this context,the present review summarizes the recent progress in developing animal models for these two pathogenic viruses and highlights the utility of these models in studying SARS-associated coronavirus diseases.展开更多
文摘Hyperuricemia(HUA)is a condition associated with a high concentration of uric acid(UA)in the bloodstream and can cause gout and chronic kidney disease.The gut microbiota of patients with gout and HUA is significantly altered compared to that of healthy people.This article focused on the complex interconnection between alterations in the gut microbiota and the development of this disorder.Some studies have suggested that changes in the composition,diversity,and activity of microbes play a key role in establishing and progressing HUA and gout pathogenesis.Therefore,we discussed how the gut microbiota contributes to HUA through purine metabolism,UA excretion,and intestinal inflammatory responses.We examined specific changes in the composition of the gut microbiota associated with gout and HUA,highlighting key bacterial taxa and the metabolic pathways involved.Additionally,we discussed the effect of conventional gout treatments on the gut microbiota composition,along with emerging therapeutic approaches that target the gut microbiome,such as the use of probiotics and prebiotics.We also provided insights into a study regarding the gut microbiota as a possible novel therapeutic intervention for gout treatment and dysbiosis-related diagnosis.
文摘The gut microbiome plays a key role in the pathogenesis and disease activity of inflammatory bowel disease(IBD).While research has focused on the bacterial microbiome,recent studies have shifted towards host genetics and host-fungal interactions.The mycobiota is a vital component of the gastrointestinal microbial community and plays a significant role in immune regulation.Among fungi,Candida species,particularly Candida albicans(C.albicans),have been extensively studied due to their dual role as gut commensals and invasive pathogens.Recent findings indicate that various strains of C.albicans exhibit consid-erable differences in virulence factors,impacting IBD's pathophysiology.Intestinal fungal dysbiosis and antifungal mucosal immunity may be associated to IBD,especially Crohn's disease(CD).This article discusses intestinal fungal dysbiosis and antifungal immunity in healthy individuals and CD patients.It discusses factors influencing the mycobiome's role in IBD pathogenesis and highlights significant contributions from the scientific community aimed at enhancing understanding of the mycobiome and encouraging further research and targeted intervention studies on specific fungal populations.Our article also provided insights into a recent study by Wu et al in the World Journal of Gastroenterology regarding the role of the gut microbiota in the pathogenesis of CD.
文摘In this editorial,we examine a paper by Koizumi et al,on the role of peroxisome proliferator-activated receptor(PPAR)agonists in alcoholic liver disease(ALD).The study determined whether elafibranor protected the intestinal barrier and reduced liver fibrosis in a mouse model of ALD.The study also underlines the role of PPARs in intestinal barrier function and lipid homeostasis,which are both affected by ALD.Effective therapies are necessary for ALD because it is a critical health issue that affects people worldwide.This editorial analyzes the possibility of PPAR agonists as treatments for ALD.As key factors of inflammation and metabolism,PPARs offer multiple methods for managing the complex etiology of ALD.We assess the abilities of PPARα,PPARγ,and PPARβ/δagonists to prevent steatosis,inflammation,and fibrosis due to liver diseases.Recent research carried out in preclinical and clinical settings has shown that PPAR agonists can reduce the severity of liver disease.This editorial discusses the data analyzed and the obstacles,advantages,and mechanisms of action of PPAR agonists for ALD.Further research is needed to understand the efficacy,safety,and mechanisms of PPAR agonists for treating ALD.
基金COVID Therapeutics,Department of Biotechnology,Government of India,Ref.No.BT/PR4094/COT/142/20/2021.
文摘There is a critical need to develop animal models to alleviate vaccine and drug development difficulties against zoonotic viral infections.The coronavirus family,which includes severe acute respiratory syndrome coronavirus 1 and severe acute respiratory syndrome coronavirus 2,crossed the species barrier and infected humans,causing a global outbreak in the 21st century.Because humans do not have pre-existing immunity against these viral infections and with ethics governing clinical trials,animal models are therefore being used in clinical studies to facilitate drug discovery and testing efficacy of vaccines.The ideal animal models should reflect the viral replication,clinical signs,and pathological responses observed in humans.Different animal species should be tested to establish an appropriate animal model to study the disease pathology,transmission and evaluation of novel vaccine and drug candidates to treat coronavirus disease 2019.In this context,the present review summarizes the recent progress in developing animal models for these two pathogenic viruses and highlights the utility of these models in studying SARS-associated coronavirus diseases.