The expressions of the internal forces of the webs under the vertical loads of the simply supported beam type trusses with vertical and horizontal webs and without vertical webs are studied through the mathematical fo...The expressions of the internal forces of the webs under the vertical loads of the simply supported beam type trusses with vertical and horizontal webs and without vertical webs are studied through the mathematical formula method. The variations of internal forces under different angles and spacings of the webs are simulated. The law of the optimal arrangement of the webs of the parallel-string simple-beam truss is obtained: under the condition that the rigidity of the rod is allowed, the form of no vertical web-type truss and reducing the span distance and inclination of the side span are advisable, which can save materials and reduce the weight as well. This method can be applied to the calculation of internal forces for arbitrary loads and truss forms.展开更多
With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy stor...With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy storage device.However,the limitations suffered by AZIBs,including volume expansion and active materials dissolution of the cathode,electrochemical corrosion,irreversible side reactions,zinc dendrites of the anode,have seriously decelerated the civilianization process of AZIBs.Currently,polymers have tremendous superiority for application in AZIBs attributed to their exceptional chemical stability,tunable structure,high energy density and outstanding mechanical properties.Considering the expanding applications of AZIBs and the superiority of polymers,this comprehensive paper meticulously reviews the benefits of utilizing polymeric applied to cathodes and anodes,respectively.To begin with,with adjustable structure as an entry point,the correlation between polymer structure and the function of energy storage as well as optimization is deeply investigated in respect to the mechanism.Then,depending on the diversity of properties and structures,the development of polymers in AZIBs is summarized,including conductive polymers,redox polymers as well as carbon composite polymers for cathode and polyvinylidene fluoride-,carbonyl-,amino-,nitrile-based polymers for anode,and a comprehensive evaluation of the shortcomings of these strategies is provided.Finally,an outlook highlights some of the challenges posed by the application of polymers and offers insights into the potential future direction of polymers in AZIBs.It is designed to provide a thorough reference for researchers and developers working on polymer for AZIBs.展开更多
A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu...A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.展开更多
The swimming performance of rod-shaped microswimmers in a channel was numerically investigated using the two-dimensional lattice Boltzmann method(LBM).We considered variable-length squirmer rods,assembled from circula...The swimming performance of rod-shaped microswimmers in a channel was numerically investigated using the two-dimensional lattice Boltzmann method(LBM).We considered variable-length squirmer rods,assembled from circular squirmer models with self-propulsion mechanisms,and analyzed the effects of the Reynolds number(Re),aspect ratio(ε),squirmer-type factor(β)and blockage ratio(κ)on swimming efficiency(η)and power expenditure(P).The results show no significant difference in power expenditure between pushers(microswimmers propelled from the tail)and pullers(microswimmers propelled from the head)at the low Reynolds numbers adopted in this study.However,the swimming efficiency of pushers surpasses that of pullers.Moreover,as the degree of channel blockage increases(i.e.,κincreases),the squirmer rod consumes more energy while swimming,and its swimming efficiency also increases,which is clearly reflected whenε≤3.Notably,squirmer rods with a larger aspect ratioεand aβvalue approaching 0 can achieve high swimming efficiency with lower power expenditure.The advantages of self-propelled microswimmers are manifested whenε>4 andβ=±1,where the squirmer rod consumes less energy than a passive rod driven by an external field.These findings underscore the potential for designing more efficient microswimmers by carefully considering the interactions between the microswimmer geometry,propulsion mechanism and fluid dynamic environment.展开更多
In order to obtain the main and secondary factors affecting the properties of the screw steel and its correlation, this text constructed a TOPSIS (Technique for order performance by similarity to ideal solution) evalu...In order to obtain the main and secondary factors affecting the properties of the screw steel and its correlation, this text constructed a TOPSIS (Technique for order performance by similarity to ideal solution) evaluation system based on entropy weight. First of all, three properties indexes of deformed steel bar are selected: the yield strength, tensile strength and elongation at break after breaking. Secondly, we defined a comprehensive index C which is for measuring the property of thread steel by using TOPSIS method, and then the correlation degree of various chemical elements and comprehensive index C were analyzed. According to the principle that the bigger of coefficient correlation, the greater impact, to draw a conclusion: the main elements that affect the properties of deformed steel bar are C, Ceq, Si and Cr, the secondary factors are Mn, Mo, ALT, Ni, Cu, Cr, S, P and V. Finally, the correlation between various elements was studied by means of correlation analysis, where there was a significant positive correlation between Cu and Cr.展开更多
文摘The expressions of the internal forces of the webs under the vertical loads of the simply supported beam type trusses with vertical and horizontal webs and without vertical webs are studied through the mathematical formula method. The variations of internal forces under different angles and spacings of the webs are simulated. The law of the optimal arrangement of the webs of the parallel-string simple-beam truss is obtained: under the condition that the rigidity of the rod is allowed, the form of no vertical web-type truss and reducing the span distance and inclination of the side span are advisable, which can save materials and reduce the weight as well. This method can be applied to the calculation of internal forces for arbitrary loads and truss forms.
基金financially supported by the National Natural Science Foundation of China(51872090,51772097,22304055)the Hebei Natural Science Fund for Distinguished Young Scholar(E2019209433)+4 种基金the Youth Talent Program of Hebei Provincial Education Department(BJ2018020)the Natural Science Foundation of Hebei Province(E2020209151,E2022209158,B2022209026,D2023209012)the Central Guiding Local Science and Technology Development Fund Project(236Z4409G)the Science and Technology Project of Hebei Education Department(SLRC2019028)the Science and Technology Planning Project of Tangshan City(22130227H)。
文摘With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy storage device.However,the limitations suffered by AZIBs,including volume expansion and active materials dissolution of the cathode,electrochemical corrosion,irreversible side reactions,zinc dendrites of the anode,have seriously decelerated the civilianization process of AZIBs.Currently,polymers have tremendous superiority for application in AZIBs attributed to their exceptional chemical stability,tunable structure,high energy density and outstanding mechanical properties.Considering the expanding applications of AZIBs and the superiority of polymers,this comprehensive paper meticulously reviews the benefits of utilizing polymeric applied to cathodes and anodes,respectively.To begin with,with adjustable structure as an entry point,the correlation between polymer structure and the function of energy storage as well as optimization is deeply investigated in respect to the mechanism.Then,depending on the diversity of properties and structures,the development of polymers in AZIBs is summarized,including conductive polymers,redox polymers as well as carbon composite polymers for cathode and polyvinylidene fluoride-,carbonyl-,amino-,nitrile-based polymers for anode,and a comprehensive evaluation of the shortcomings of these strategies is provided.Finally,an outlook highlights some of the challenges posed by the application of polymers and offers insights into the potential future direction of polymers in AZIBs.It is designed to provide a thorough reference for researchers and developers working on polymer for AZIBs.
基金supported by the Henan Provincial Science and Technology Research Project under Grant(152102310295).
文摘A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12372251 and 12132015)the Fundamental Research Funds for the Provincial Universities of Zhejiang(Grant No.2023YW69)。
文摘The swimming performance of rod-shaped microswimmers in a channel was numerically investigated using the two-dimensional lattice Boltzmann method(LBM).We considered variable-length squirmer rods,assembled from circular squirmer models with self-propulsion mechanisms,and analyzed the effects of the Reynolds number(Re),aspect ratio(ε),squirmer-type factor(β)and blockage ratio(κ)on swimming efficiency(η)and power expenditure(P).The results show no significant difference in power expenditure between pushers(microswimmers propelled from the tail)and pullers(microswimmers propelled from the head)at the low Reynolds numbers adopted in this study.However,the swimming efficiency of pushers surpasses that of pullers.Moreover,as the degree of channel blockage increases(i.e.,κincreases),the squirmer rod consumes more energy while swimming,and its swimming efficiency also increases,which is clearly reflected whenε≤3.Notably,squirmer rods with a larger aspect ratioεand aβvalue approaching 0 can achieve high swimming efficiency with lower power expenditure.The advantages of self-propelled microswimmers are manifested whenε>4 andβ=±1,where the squirmer rod consumes less energy than a passive rod driven by an external field.These findings underscore the potential for designing more efficient microswimmers by carefully considering the interactions between the microswimmer geometry,propulsion mechanism and fluid dynamic environment.
文摘In order to obtain the main and secondary factors affecting the properties of the screw steel and its correlation, this text constructed a TOPSIS (Technique for order performance by similarity to ideal solution) evaluation system based on entropy weight. First of all, three properties indexes of deformed steel bar are selected: the yield strength, tensile strength and elongation at break after breaking. Secondly, we defined a comprehensive index C which is for measuring the property of thread steel by using TOPSIS method, and then the correlation degree of various chemical elements and comprehensive index C were analyzed. According to the principle that the bigger of coefficient correlation, the greater impact, to draw a conclusion: the main elements that affect the properties of deformed steel bar are C, Ceq, Si and Cr, the secondary factors are Mn, Mo, ALT, Ni, Cu, Cr, S, P and V. Finally, the correlation between various elements was studied by means of correlation analysis, where there was a significant positive correlation between Cu and Cr.