The significant decrease of acid sites caused by alkali metal poisoning is the major factor in the deactivation of commercial V_(2)O_(5)-WO_(3)/TiO_(2)NH_(3)-SCR catalysts.In this work,the solid superacid SO_(4)^(2-)-...The significant decrease of acid sites caused by alkali metal poisoning is the major factor in the deactivation of commercial V_(2)O_(5)-WO_(3)/TiO_(2)NH_(3)-SCR catalysts.In this work,the solid superacid SO_(4)^(2-)-TiO_(2) modified by sulfate radicals,was selected as the catalyst support,which showed superior potassium resistance.The physicochemical properties and K-poisoning resistance of the V_(2)O_(5)-WO_(3)/SO_(4)^(2-)-TiO_(2)(VWSTi) catalyst were carried out by XRD,BET,H2-TPR,NH3-TPD,XPS,in situ DRIFTS and TG.The results pointed out that the introduction of SO_(4)^(2-)significantly increased the NH3-SCR catalytic activity at high temperatures,with an exceptionally high NO_(x) conversion over 90% between 275℃ and 500℃.When 0.5%(mass) K_(2)O was doped on the catalysts,the catalytic performance of the traditional V_(2)O_(5)-WO_(3)/TiO_(2)(VWTi) catalyst decreased significantly,while the VWSTi catalyst could still maintain a NOxconversion over 90%in the range of 300–500℃.The characterizations suggested that the support of SO_(4)^(2-)-TiO_(2) greatly increased the number of acidic sites,thereby enhancing the adsorption capacity of the reactant NH_(3).The results above demonstrated a potential approach to achieve superior potassium resistance for NH3-SCR catalysts using solid superacid.展开更多
Rotating packed bed(RPB) is one of the most effective gas–liquid mass transfer enhancement reactors, its effective specific mass transfer area(ae) is critical to understand the mass transfer process. By using the NaO...Rotating packed bed(RPB) is one of the most effective gas–liquid mass transfer enhancement reactors, its effective specific mass transfer area(ae) is critical to understand the mass transfer process. By using the NaOH–CO_(2) chemical absorption method, the aevalues of three RPB reactors with different rotor sizes were measured under different operation conditions. The results showed that the high gravity factor and liquid flow rate were major affecting factors, while the gas flow rate exhibited minor influence.The radius of packing is the dominant equipment factor to affect aevalue. The results indicated that the contact area depends on the dispersion of the liquid phase, thus the centrifugal force of rotating packed bed greatly influenced the aevalue. Moreover, the measured ae/ap(effective specific mass transfer area/specific surface area of packing) values were fitted with dimensionless correlation formulas. The unified correlation formula with dimensionless bed size parameter can well predict the experimental data and the prediction errors were within 15%.展开更多
The issues of reducing CO_2 emissions, sustainably utilizing natural mineral resources, and dealing with industrial waste offer challenges for sustainable development in energy and the environment. We propose an effic...The issues of reducing CO_2 emissions, sustainably utilizing natural mineral resources, and dealing with industrial waste offer challenges for sustainable development in energy and the environment. We propose an efficient methodology via the co-reaction of K-feldspar and phosphogypsum for the extraction of soluble potassium salts and recovery of SO_2 with reduced CO_2 emission and energy consumption. The results of characterization and reactivity evaluation indicated that the partial melting of K-feldspar and phosphogypsum in the hightemperature co-reaction significantly facilitated the reduction of phosphogypsum to SO_2 and the exchange of K^+(K-feldspar) with Ca^(2+)(CaSO_4 in phosphogypsum). The reaction parameters were systematically investigated with the highest sulfur recovery ratio of ~ 60% and K extraction ratio of ~ 87.7%. This novel methodology possesses an energy consumption reduction of ~ 28% and CO_2 emission reduction of ~ 55% comparing with the present typical commercial technologies for utilization of K-feldspar and the treatment of phosphogypsum.展开更多
Large quantities of blast furnace(BF) slag and CO_2 are discharged annually from iron and steel industries, along with a large amount of waste heat.The mineral carbonation of BF slag can not only reduce emissions of s...Large quantities of blast furnace(BF) slag and CO_2 are discharged annually from iron and steel industries, along with a large amount of waste heat.The mineral carbonation of BF slag can not only reduce emissions of solid waste but also realize the in-situ fixation of CO_2 with low energy consumption if integrated with the waste heat utilization.In this study, based on our previous works, Aspen Plus was employed to simulate and optimize the carbonation process and integrate the process energy.The effects of gehlenite extraction, MgSO_4 carbonation,and aluminum ammonium sulfate crystallization were studied systematically.The simulation results demonstrate that 2.57 kg of BF slag can sequester 1 kg of CO_2, requiring 5.34 MJ of energy(3.3 MJ heat and 2.04 MJ electricity), and this energy includes the capture of CO_2 from industrial flue gases.Approximately 60 kg net CO_2 emission reduction could be achieved for the disposal of one ton of BF slag.In addition, the by-product,aluminum ammonium sulfate, is a high value-added product.Preliminary economic analysis indicates that the profit for the whole process is 1127 CNY per ton of BF slag processed.展开更多
TiO2 pigments are typically coated with inert layers to suppress the photocatalytic activity and improve the weatherability. However, the traditional inert layers have a lower refractive index compared to TiO2, and th...TiO2 pigments are typically coated with inert layers to suppress the photocatalytic activity and improve the weatherability. However, the traditional inert layers have a lower refractive index compared to TiO2, and therefore reduce the lightening power of TiO2. In the present work, a uniform, amorphous, 2.9-nm-thick TiO2 protective layer was deposited onto the surface of anatase TiO2 pigments according to pulsed chemical vapor deposition at room temperature, with Ti Cl4 as titanium precursor. Amorphous TiO2 coating layers exhibited poor photocatalytic activity, leading to a boosted weatherability. Similarly, this coating method is also effective for TiO2 coating with amorphous SiO2 and SnO2 layers. However, the lightening power of amorphous TiO2 layer is higher than those of amorphous SiO2 and SnO2 layers. According to the measurements of photoluminescence lifetime, surface photocurrent density, charge-transfer resistance, and electron spin resonance spectroscopy, it is revealed that the amorphous layer can prevent the migration of photogenerated electrons and holes onto the surface, decreasing the densities of surface electron and hole, and thereby suppress the photocatalytic activity.展开更多
The selective oxidation of cyclopentene by aqueous H2O2 using H3PW12O40 and tetrabutyl ammonium bromide(TBAB) as a phase transfer catalyst has been investigated. The results show that the presence of TBAB significantl...The selective oxidation of cyclopentene by aqueous H2O2 using H3PW12O40 and tetrabutyl ammonium bromide(TBAB) as a phase transfer catalyst has been investigated. The results show that the presence of TBAB significantly improved the oxidation selectivity of cyclopentene. The effects of the reaction conditions on the conversion of cyclopentene were investigated in detail. The optimal reaction conditions are as follows: the H3PW12O40 to TBAB molar ratio, 1:1–1:3;H3PW12O40 to cyclopentene molar ratio,0.54:100–0.64:100;and molar ratio of H2O2 to cyclopentene, 1.6:1. The conversion reached to 59.8% in 4h at 35.0 ℃, while the selectivity of glutaraldehyde was 38.0% and the selectivity of 1,2-cyclopentanediol was 55.6%. In addition, a route for oxidation of cyclopentene by aqueous H2O2 using a heteropoly acid and quaternary ammonium salt as a phase transfer catalyst was proposed.展开更多
CO_(2)capture with a low energy consumption is of important application significance for reducing CO_(2)emission.The phase-change absorbent developed in recent years shows its potential for low-energy CO_(2)capture.Th...CO_(2)capture with a low energy consumption is of important application significance for reducing CO_(2)emission.The phase-change absorbent developed in recent years shows its potential for low-energy CO_(2)capture.The unclear phase-splitting rule hinders the efficient development of CO_(2)phase-change absorbents.To predict phase-splitting behaviors of mono/poly-amine-organic solvent-water system with various concentrations,a quasi-activity coefficient was developed based on Debye&Mc Aulay equation and some Density function theory descriptors.Six models based on Debye&Mc Aulay equation were developed with different ion radius,descriptors or poly-amine-CO_(2)products.The phase-splitting boundary was drawn on the model with the best predictability.This quasi-activity coefficient would provide guidance for the phase-splitting systems development,especially for polyamines.展开更多
Kiln phosphoric acid(KPA)technology could produce P2O5 with high purity and has been applied in thermal phosphoric acid industry;however the formation of fouling in the high-temperature rotary kiln restricts the stabl...Kiln phosphoric acid(KPA)technology could produce P2O5 with high purity and has been applied in thermal phosphoric acid industry;however the formation of fouling in the high-temperature rotary kiln restricts the stable and long-term operation.In this paper,the reaction of phosphate ores with gaseous P2O5 was investigated in a high-temperature reactor,and the Ca O-SiO2-P2O5 ternary phase diagram was analyzed to understand the fouling formation mechanism.The results showed that the low-melting-point products,such as Ca(PO3)2and Ca2P2O7,are responsible for the fouling in the KPA process.In addition,a small amount of impurities,e.g.,aluminum and iron,could facilitate the generation of the low-melting-point products and cause serious fouling.Based on the high-temperature SiO2-P2O5 and CaO-SiO2-P2O5 phase diagram analysis,the control of Si/Ca molar ratio(e.g.,Si/Ca=2.0)was found to avoid fouling formation in the kiln.These results could provide the operation parameters of reaction temperature and feeds composition to suppress the fouling in the kiln reactor for the phosphoric acid production in industry.展开更多
The commercial sulfate process for pigment production uses concentrated sulfuric acid(N 85 wt% H_2SO_4) as feeding material and discharges 8–10 tons of spend dilute acid(20 wt% H_2SO_4) per ton of product. Re-using s...The commercial sulfate process for pigment production uses concentrated sulfuric acid(N 85 wt% H_2SO_4) as feeding material and discharges 8–10 tons of spend dilute acid(20 wt% H_2SO_4) per ton of product. Re-using spend acid to leach ilmenite can cut the waste emission and save fresh feeding acid. However, the leaching reaction with dilute acid is very slow and the digestion efficiency is fairly low. This paper describes a wet-milling process to enhance the dilute-acid leaching of ilmenite that makes it possible to produce TiO_2 pigment in a more environmentally benign routine. The leaching kinetic study of unmilled ilmenite, dry milled 60 min ilmenite and wet milled 60 min ilmenite was conducted by revision of the shrinking core model(SCM), incorporation of particle size distribution(PSD) into SCM. The results revealed that mechano-chemical activation method significantly increased the leaching efficiency of titanium from 36% to 76% by reducing the particle size and increasing the reaction contact area. On the other hand, the milling process increased the lattice deformation and amorphization of crystalline, which lowered the activation energies in the leaching process. Compared with dry milling operation, wet milling is more effective, the particle size distribution of wet-milled ilmenite was much narrower, smaller, and more uniform. Wet milling of ilmenite makes the leaching reaction with dilute acid(60 wt% H_2 SO_4) practicable and the re-use of spend acid becomes possible and economical.展开更多
Compared with traditional sodium or calcification roasting process for vanadium extraction from raw vanadium slag(V-slag),ammonium sulfate(AS)roasting could reduce about 470℃ roasting temperature and avoid Cl_(2),HCl...Compared with traditional sodium or calcification roasting process for vanadium extraction from raw vanadium slag(V-slag),ammonium sulfate(AS)roasting could reduce about 470℃ roasting temperature and avoid Cl_(2),HCl,sodium-containing waste-water and waste gypsum discharging.To reduce the amount of AS added in vanadium extraction process,an efficient AS two-stage cyclic roasting and acid leaching process was proposed.The result of TG analysis indicates V-slag could be decomposed in 275-380℃ using AS roasting process.Using 2.03:1 total mass ratio of AS to V-slag,90.86%V and 80.54%Ti could be extracted after 380℃ roasting for 30 min and 8%initial concentration of H_(2)SO_(4) leaching at 70℃ for 100 min.XRD analysis indicates V-containing spinel phase in the 1st stage leaching residue would be efficiently decomposed by the cyclic two-stage roasting and leaching process.Furthermore,the valence of V(Ⅲ)in raw V-slag was not changed after the 1st AS roasting stage,but a part of V(Ⅲ)in the 1st leaching residue was oxidized to V(V)after 2nd roasting process.展开更多
Pulsed chemical vapor deposition(P-CVD)is a promising technology for the surface modification of TiO_(2) particles.For the scale-up application of P-CVD,a custom-designed rotary reactor and corresponding coating proce...Pulsed chemical vapor deposition(P-CVD)is a promising technology for the surface modification of TiO_(2) particles.For the scale-up application of P-CVD,a custom-designed rotary reactor and corresponding coating process at room temperature was developed in the present work.The obtained SiO_(2)-coated TiO_(2) particles were characterized by various measures including high-resolution transmission electron microscope,Fourier transform infrared spectroscopy,X-ray diffraction,etc.The results illustrated that the SiO_(2) films with a thickness of(3.7±0.7)nm were successfully deposited onto the surface of TiO_(2) particles.According to the dye degradation tests and acid solubility measurement,the deposited film can effectively inhibit the photocatalytic activity and enhance the weatherability of the TiO_(2) particles.Zeta potential measurements showed that the SiO_(2)-coated TiO_(2) is possible to be stably dispersed in the pH range of 6.9–11.6.The coating process made the whiteness of TiO_(2) particles decreased slightly but still sufficient(97.3±0.1)for application.Furthermore,the properties of the TiO_(2) particles coated by PCVD were compared with the particles coated by traditional wet chemical deposition.It is shown that the P-CVD can produce thinner but denser films with better photoactivity suppression performance.The developed coating process within the rotary reactor was proved practically feasible and convenient for the scale-up production of SiO_(2)-coated TiO_(2) via P-CVD.展开更多
Low-speed rotation of disc in an internal circulation of a novel de-emulsification with rotation-dise horizental contactor(RHC-D) realized de-emulsification for O/W emulsions due to repeated coalescence in oil-wet nar...Low-speed rotation of disc in an internal circulation of a novel de-emulsification with rotation-dise horizental contactor(RHC-D) realized de-emulsification for O/W emulsions due to repeated coalescence in oil-wet narrow channels at a low rotation speed. For three emulsions included ethanol/water/2-ethyl-1-hexanol, ethanol/water/2-ethyl-1-hexanol/SDS(Sodium Dodecyl Sulfonate) and 2-ethyl-1-hexanol/water/SDS emulsion, deemulsification ratios of oil phase could reach 1, 1 and 0.67 respectively at 170 r·min-1, and de-emulsification ratios increased obviously after agitating 10 min. De-emulsification experiment in the seam indicated that oil droplet sizes in O/W emulsion became larger after de-emulsification. The main de-emulsification mechanism in RHCD was the coalescence of oil droplets in oil-wet narrow channels. With increase of the rotation speed, oil droplets dispersed better in the aqueous phase. However, de-emulsification effect enhanced due to the increase of the coalescence rate at a bit higher rotation speed. In addition, internal circulation made those O/W emulsions to be broken repeatedly, consequently de-emulsification ratio increased. Repeated de-emulsification through internal circulation might make continuous extraction of ethanol come true at a low rotation speed.展开更多
After five years of study,it was found that compared with the conventional cultivation techniques,the average yield per plant of3-5-year-old Jinhong apple trees cultivated under the ridge covering mode was increased b...After five years of study,it was found that compared with the conventional cultivation techniques,the average yield per plant of3-5-year-old Jinhong apple trees cultivated under the ridge covering mode was increased by 2. 12 times,the stem diameter was increased by20%,the branch number was increased by 73. 5%,and the underground root number was increased by 38. 3%. Under the ridge covering mode,the main distribution area of the underground roots of Jinhong apple trees was moved down to 15-55 cm,the temperature of soil 20 cm beneath the surface of the ridges increased by 1. 3-1. 5℃,the temperature of soil 40 cm beneath the surface of the ridges rose by 0. 9-1. 0℃,and the water content of soil 20-40 cm from the ground was maintained around 5%. Under the ridge covering mode,the Jinhong apple trees grew robustly,began to fruit 3 years later and yielded highly 5 years later. In addition,the ridge covering model also has illumination-enhancing,pest-controlling and tillage-free characteristics.展开更多
Thermal stress is an important reason of coal particle primary fragmentation,during which the role of pore structure is ambiguous.Thermal stress induced fragmentation experiments were conducted with low volatile coal/...Thermal stress is an important reason of coal particle primary fragmentation,during which the role of pore structure is ambiguous.Thermal stress induced fragmentation experiments were conducted with low volatile coal/char particles,and the results show that the fragmentation severity enhances with increasing porosity.Various porous thermal stress models were developed with finite element method,and the influences of the pore shape,size,position and porosity on the thermal stress were discussed.The maximum thermal stress inside particle increases with pore curvature,the pore position affects the thermal stress more significantly at the particle center and surface.The expectation of the maximum tensile thermal stress linearly increases with porosity,making the particles with higher porosity easier to fragment,contrary to the conclusion deduced from the devolatilization theory.The obtained results are valuable for the analysis of different thermal processes concerning the thermal stresses of the solid feedstocks.展开更多
基金supported by the National Natural Science Foundation of China (22108184)China Postdoctoral Science Foundation (2021TQ0221)+1 种基金the Sichuan Science and Technology Program (2021JDRC0117)Chengdu Science and Technology Program (2021-YF05-00378-SN)。
文摘The significant decrease of acid sites caused by alkali metal poisoning is the major factor in the deactivation of commercial V_(2)O_(5)-WO_(3)/TiO_(2)NH_(3)-SCR catalysts.In this work,the solid superacid SO_(4)^(2-)-TiO_(2) modified by sulfate radicals,was selected as the catalyst support,which showed superior potassium resistance.The physicochemical properties and K-poisoning resistance of the V_(2)O_(5)-WO_(3)/SO_(4)^(2-)-TiO_(2)(VWSTi) catalyst were carried out by XRD,BET,H2-TPR,NH3-TPD,XPS,in situ DRIFTS and TG.The results pointed out that the introduction of SO_(4)^(2-)significantly increased the NH3-SCR catalytic activity at high temperatures,with an exceptionally high NO_(x) conversion over 90% between 275℃ and 500℃.When 0.5%(mass) K_(2)O was doped on the catalysts,the catalytic performance of the traditional V_(2)O_(5)-WO_(3)/TiO_(2)(VWTi) catalyst decreased significantly,while the VWSTi catalyst could still maintain a NOxconversion over 90%in the range of 300–500℃.The characterizations suggested that the support of SO_(4)^(2-)-TiO_(2) greatly increased the number of acidic sites,thereby enhancing the adsorption capacity of the reactant NH_(3).The results above demonstrated a potential approach to achieve superior potassium resistance for NH3-SCR catalysts using solid superacid.
基金the support from the National Natural Science Foundation of China (22008157,21978178)。
文摘Rotating packed bed(RPB) is one of the most effective gas–liquid mass transfer enhancement reactors, its effective specific mass transfer area(ae) is critical to understand the mass transfer process. By using the NaOH–CO_(2) chemical absorption method, the aevalues of three RPB reactors with different rotor sizes were measured under different operation conditions. The results showed that the high gravity factor and liquid flow rate were major affecting factors, while the gas flow rate exhibited minor influence.The radius of packing is the dominant equipment factor to affect aevalue. The results indicated that the contact area depends on the dispersion of the liquid phase, thus the centrifugal force of rotating packed bed greatly influenced the aevalue. Moreover, the measured ae/ap(effective specific mass transfer area/specific surface area of packing) values were fitted with dimensionless correlation formulas. The unified correlation formula with dimensionless bed size parameter can well predict the experimental data and the prediction errors were within 15%.
基金Supported by the National Natural Science Foundation of China(21336004)the State Key Research Plan of the Ministry of Science and Technology(2013BAC12B03)
文摘The issues of reducing CO_2 emissions, sustainably utilizing natural mineral resources, and dealing with industrial waste offer challenges for sustainable development in energy and the environment. We propose an efficient methodology via the co-reaction of K-feldspar and phosphogypsum for the extraction of soluble potassium salts and recovery of SO_2 with reduced CO_2 emission and energy consumption. The results of characterization and reactivity evaluation indicated that the partial melting of K-feldspar and phosphogypsum in the hightemperature co-reaction significantly facilitated the reduction of phosphogypsum to SO_2 and the exchange of K^+(K-feldspar) with Ca^(2+)(CaSO_4 in phosphogypsum). The reaction parameters were systematically investigated with the highest sulfur recovery ratio of ~ 60% and K extraction ratio of ~ 87.7%. This novel methodology possesses an energy consumption reduction of ~ 28% and CO_2 emission reduction of ~ 55% comparing with the present typical commercial technologies for utilization of K-feldspar and the treatment of phosphogypsum.
基金Supported by the National Key Projects for Fundamental Research and Development of China(2016YFB0600904)
文摘Large quantities of blast furnace(BF) slag and CO_2 are discharged annually from iron and steel industries, along with a large amount of waste heat.The mineral carbonation of BF slag can not only reduce emissions of solid waste but also realize the in-situ fixation of CO_2 with low energy consumption if integrated with the waste heat utilization.In this study, based on our previous works, Aspen Plus was employed to simulate and optimize the carbonation process and integrate the process energy.The effects of gehlenite extraction, MgSO_4 carbonation,and aluminum ammonium sulfate crystallization were studied systematically.The simulation results demonstrate that 2.57 kg of BF slag can sequester 1 kg of CO_2, requiring 5.34 MJ of energy(3.3 MJ heat and 2.04 MJ electricity), and this energy includes the capture of CO_2 from industrial flue gases.Approximately 60 kg net CO_2 emission reduction could be achieved for the disposal of one ton of BF slag.In addition, the by-product,aluminum ammonium sulfate, is a high value-added product.Preliminary economic analysis indicates that the profit for the whole process is 1127 CNY per ton of BF slag processed.
基金Supported by the National Key R&D Program of China(2018YFB0605700).
文摘TiO2 pigments are typically coated with inert layers to suppress the photocatalytic activity and improve the weatherability. However, the traditional inert layers have a lower refractive index compared to TiO2, and therefore reduce the lightening power of TiO2. In the present work, a uniform, amorphous, 2.9-nm-thick TiO2 protective layer was deposited onto the surface of anatase TiO2 pigments according to pulsed chemical vapor deposition at room temperature, with Ti Cl4 as titanium precursor. Amorphous TiO2 coating layers exhibited poor photocatalytic activity, leading to a boosted weatherability. Similarly, this coating method is also effective for TiO2 coating with amorphous SiO2 and SnO2 layers. However, the lightening power of amorphous TiO2 layer is higher than those of amorphous SiO2 and SnO2 layers. According to the measurements of photoluminescence lifetime, surface photocurrent density, charge-transfer resistance, and electron spin resonance spectroscopy, it is revealed that the amorphous layer can prevent the migration of photogenerated electrons and holes onto the surface, decreasing the densities of surface electron and hole, and thereby suppress the photocatalytic activity.
基金Supported by the National Natural Science Foundation of China(21406146)
文摘The selective oxidation of cyclopentene by aqueous H2O2 using H3PW12O40 and tetrabutyl ammonium bromide(TBAB) as a phase transfer catalyst has been investigated. The results show that the presence of TBAB significantly improved the oxidation selectivity of cyclopentene. The effects of the reaction conditions on the conversion of cyclopentene were investigated in detail. The optimal reaction conditions are as follows: the H3PW12O40 to TBAB molar ratio, 1:1–1:3;H3PW12O40 to cyclopentene molar ratio,0.54:100–0.64:100;and molar ratio of H2O2 to cyclopentene, 1.6:1. The conversion reached to 59.8% in 4h at 35.0 ℃, while the selectivity of glutaraldehyde was 38.0% and the selectivity of 1,2-cyclopentanediol was 55.6%. In addition, a route for oxidation of cyclopentene by aqueous H2O2 using a heteropoly acid and quaternary ammonium salt as a phase transfer catalyst was proposed.
基金financial support from National Natural Science Foundation of China(21878190)China Petrochemical Corporation(419033-1)the Engineering Experimental Teaching Center,School of Chemical Engineering,Sichuan University for the Nuclear Magnetic Resonance(NMR,JNM-ECZ400S/L1,JEOL Ltd.)support and the compute server support。
文摘CO_(2)capture with a low energy consumption is of important application significance for reducing CO_(2)emission.The phase-change absorbent developed in recent years shows its potential for low-energy CO_(2)capture.The unclear phase-splitting rule hinders the efficient development of CO_(2)phase-change absorbents.To predict phase-splitting behaviors of mono/poly-amine-organic solvent-water system with various concentrations,a quasi-activity coefficient was developed based on Debye&Mc Aulay equation and some Density function theory descriptors.Six models based on Debye&Mc Aulay equation were developed with different ion radius,descriptors or poly-amine-CO_(2)products.The phase-splitting boundary was drawn on the model with the best predictability.This quasi-activity coefficient would provide guidance for the phase-splitting systems development,especially for polyamines.
基金support from the National Key R&D Program of China(2018YFC1900201)the Provincial Key R&D Program of Shanxi(201603D31212003)。
文摘Kiln phosphoric acid(KPA)technology could produce P2O5 with high purity and has been applied in thermal phosphoric acid industry;however the formation of fouling in the high-temperature rotary kiln restricts the stable and long-term operation.In this paper,the reaction of phosphate ores with gaseous P2O5 was investigated in a high-temperature reactor,and the Ca O-SiO2-P2O5 ternary phase diagram was analyzed to understand the fouling formation mechanism.The results showed that the low-melting-point products,such as Ca(PO3)2and Ca2P2O7,are responsible for the fouling in the KPA process.In addition,a small amount of impurities,e.g.,aluminum and iron,could facilitate the generation of the low-melting-point products and cause serious fouling.Based on the high-temperature SiO2-P2O5 and CaO-SiO2-P2O5 phase diagram analysis,the control of Si/Ca molar ratio(e.g.,Si/Ca=2.0)was found to avoid fouling formation in the kiln.These results could provide the operation parameters of reaction temperature and feeds composition to suppress the fouling in the kiln reactor for the phosphoric acid production in industry.
基金Supported by the National Natural Science Foundation of China(21236004)
文摘The commercial sulfate process for pigment production uses concentrated sulfuric acid(N 85 wt% H_2SO_4) as feeding material and discharges 8–10 tons of spend dilute acid(20 wt% H_2SO_4) per ton of product. Re-using spend acid to leach ilmenite can cut the waste emission and save fresh feeding acid. However, the leaching reaction with dilute acid is very slow and the digestion efficiency is fairly low. This paper describes a wet-milling process to enhance the dilute-acid leaching of ilmenite that makes it possible to produce TiO_2 pigment in a more environmentally benign routine. The leaching kinetic study of unmilled ilmenite, dry milled 60 min ilmenite and wet milled 60 min ilmenite was conducted by revision of the shrinking core model(SCM), incorporation of particle size distribution(PSD) into SCM. The results revealed that mechano-chemical activation method significantly increased the leaching efficiency of titanium from 36% to 76% by reducing the particle size and increasing the reaction contact area. On the other hand, the milling process increased the lattice deformation and amorphization of crystalline, which lowered the activation energies in the leaching process. Compared with dry milling operation, wet milling is more effective, the particle size distribution of wet-milled ilmenite was much narrower, smaller, and more uniform. Wet milling of ilmenite makes the leaching reaction with dilute acid(60 wt% H_2 SO_4) practicable and the re-use of spend acid becomes possible and economical.
基金funded by National Natural Science Foundation of China(22008161).
文摘Compared with traditional sodium or calcification roasting process for vanadium extraction from raw vanadium slag(V-slag),ammonium sulfate(AS)roasting could reduce about 470℃ roasting temperature and avoid Cl_(2),HCl,sodium-containing waste-water and waste gypsum discharging.To reduce the amount of AS added in vanadium extraction process,an efficient AS two-stage cyclic roasting and acid leaching process was proposed.The result of TG analysis indicates V-slag could be decomposed in 275-380℃ using AS roasting process.Using 2.03:1 total mass ratio of AS to V-slag,90.86%V and 80.54%Ti could be extracted after 380℃ roasting for 30 min and 8%initial concentration of H_(2)SO_(4) leaching at 70℃ for 100 min.XRD analysis indicates V-containing spinel phase in the 1st stage leaching residue would be efficiently decomposed by the cyclic two-stage roasting and leaching process.Furthermore,the valence of V(Ⅲ)in raw V-slag was not changed after the 1st AS roasting stage,but a part of V(Ⅲ)in the 1st leaching residue was oxidized to V(V)after 2nd roasting process.
基金supported by the National Key Research and Development Program of China(2018YFB0605700)National Natural Science Foundation of China(21908150)China Postdoctoral Science Foundation(2019M653404)。
文摘Pulsed chemical vapor deposition(P-CVD)is a promising technology for the surface modification of TiO_(2) particles.For the scale-up application of P-CVD,a custom-designed rotary reactor and corresponding coating process at room temperature was developed in the present work.The obtained SiO_(2)-coated TiO_(2) particles were characterized by various measures including high-resolution transmission electron microscope,Fourier transform infrared spectroscopy,X-ray diffraction,etc.The results illustrated that the SiO_(2) films with a thickness of(3.7±0.7)nm were successfully deposited onto the surface of TiO_(2) particles.According to the dye degradation tests and acid solubility measurement,the deposited film can effectively inhibit the photocatalytic activity and enhance the weatherability of the TiO_(2) particles.Zeta potential measurements showed that the SiO_(2)-coated TiO_(2) is possible to be stably dispersed in the pH range of 6.9–11.6.The coating process made the whiteness of TiO_(2) particles decreased slightly but still sufficient(97.3±0.1)for application.Furthermore,the properties of the TiO_(2) particles coated by PCVD were compared with the particles coated by traditional wet chemical deposition.It is shown that the P-CVD can produce thinner but denser films with better photoactivity suppression performance.The developed coating process within the rotary reactor was proved practically feasible and convenient for the scale-up production of SiO_(2)-coated TiO_(2) via P-CVD.
文摘Low-speed rotation of disc in an internal circulation of a novel de-emulsification with rotation-dise horizental contactor(RHC-D) realized de-emulsification for O/W emulsions due to repeated coalescence in oil-wet narrow channels at a low rotation speed. For three emulsions included ethanol/water/2-ethyl-1-hexanol, ethanol/water/2-ethyl-1-hexanol/SDS(Sodium Dodecyl Sulfonate) and 2-ethyl-1-hexanol/water/SDS emulsion, deemulsification ratios of oil phase could reach 1, 1 and 0.67 respectively at 170 r·min-1, and de-emulsification ratios increased obviously after agitating 10 min. De-emulsification experiment in the seam indicated that oil droplet sizes in O/W emulsion became larger after de-emulsification. The main de-emulsification mechanism in RHCD was the coalescence of oil droplets in oil-wet narrow channels. With increase of the rotation speed, oil droplets dispersed better in the aqueous phase. However, de-emulsification effect enhanced due to the increase of the coalescence rate at a bit higher rotation speed. In addition, internal circulation made those O/W emulsions to be broken repeatedly, consequently de-emulsification ratio increased. Repeated de-emulsification through internal circulation might make continuous extraction of ethanol come true at a low rotation speed.
基金Supported by Earmarked Fund for China Agriculture Research System(CARS-27)
文摘After five years of study,it was found that compared with the conventional cultivation techniques,the average yield per plant of3-5-year-old Jinhong apple trees cultivated under the ridge covering mode was increased by 2. 12 times,the stem diameter was increased by20%,the branch number was increased by 73. 5%,and the underground root number was increased by 38. 3%. Under the ridge covering mode,the main distribution area of the underground roots of Jinhong apple trees was moved down to 15-55 cm,the temperature of soil 20 cm beneath the surface of the ridges increased by 1. 3-1. 5℃,the temperature of soil 40 cm beneath the surface of the ridges rose by 0. 9-1. 0℃,and the water content of soil 20-40 cm from the ground was maintained around 5%. Under the ridge covering mode,the Jinhong apple trees grew robustly,began to fruit 3 years later and yielded highly 5 years later. In addition,the ridge covering model also has illumination-enhancing,pest-controlling and tillage-free characteristics.
基金supported by National Natural Science Foundation of China(grant No.21908150)China Postdoctoral Science Foundation(grant No.2019M653404)+1 种基金the Key Research&Development Program of Sichuan Province,China(grant No.22zDYF 1839)Sichuan University Post-Doctoral Interdisciplinary Innovation Initial Funding.
文摘Thermal stress is an important reason of coal particle primary fragmentation,during which the role of pore structure is ambiguous.Thermal stress induced fragmentation experiments were conducted with low volatile coal/char particles,and the results show that the fragmentation severity enhances with increasing porosity.Various porous thermal stress models were developed with finite element method,and the influences of the pore shape,size,position and porosity on the thermal stress were discussed.The maximum thermal stress inside particle increases with pore curvature,the pore position affects the thermal stress more significantly at the particle center and surface.The expectation of the maximum tensile thermal stress linearly increases with porosity,making the particles with higher porosity easier to fragment,contrary to the conclusion deduced from the devolatilization theory.The obtained results are valuable for the analysis of different thermal processes concerning the thermal stresses of the solid feedstocks.