Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent co...Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems.展开更多
Metal oxide thin-films transistors(TFTs)produced from solution-based printing techniques can lead to large-area electronics with low cost.However,the performance of current printed devices is inferior to those from va...Metal oxide thin-films transistors(TFTs)produced from solution-based printing techniques can lead to large-area electronics with low cost.However,the performance of current printed devices is inferior to those from vacuum-based methods due to poor film uniformity induced by the“coffeering”effect.Here,we report a novel approach to print highperformance indium tin oxide(ITO)-based TFTs and logic inverters by taking advantage of such notorious effect.ITO has high electrical conductivity and is generally used as an electrode material.However,by reducing the film thickness down to nanometers scale,the carrier concentration of ITO can be effectively reduced to enable new applications as active channels in transistors.The ultrathin(~10-nm-thick)ITO film in the center of the coffee-ring worked as semiconducting channels,while the thick ITO ridges(>18-nm-thick)served as the contact electrodes.The fully inkjet-printed ITO TFTs exhibited a high saturation mobility of 34.9 cm2 V^(−1) s^(−1) and a low subthreshold swing of 105 mV dec^(−1).In addition,the devices exhibited excellent electrical stability under positive bias illumination stress(PBIS,ΔV_(th)=0.31 V)and negative bias illuminaiton stress(NBIS,ΔV_(th)=−0.29 V)after 10,000 s voltage bias tests.More remarkably,fully printed n-type metal–oxide–semiconductor(NMOS)inverter based on ITO TFTs exhibited an extremely high gain of 181 at a low-supply voltage of 3 V,promising for advanced electronics applications.展开更多
Garlic,an economically important vegetable,spice,and medicinal crop,produces highly enlarged bulbs and unique organosulfur compounds.Here,we report a chromosome-level genome assembly for garlic,with a total size of ap...Garlic,an economically important vegetable,spice,and medicinal crop,produces highly enlarged bulbs and unique organosulfur compounds.Here,we report a chromosome-level genome assembly for garlic,with a total size of approximately 16.24 Gb,as well as the annotation of 57561 predicted protein-coding genes,making garlic the first Allium species with a sequenced genome.Analysis of this garlic genome assembly reveals a recent burst of transposable elements,explaining the substantial expansion of the garlic genome.We examined the evolution of certain genes associated with the biosynthesis of allicin and inulin neoseries-type fructans,and provided new insights into the biosynthesis of these two compounds.Furthermore,a large-scale transcriptome was produced to characterize the expression patterns of garlic genes in different tissues and at various growth stages of enlarged bulbs.The reference genome and large-scale transcriptome data generated in this study provide valuable new resources for research on garlic biology and breeding.展开更多
Ammonia has emerged as a promising energy carrier owing to its carbon neutral content and low expense in long-range transportation.Therefore,development of a specific pathway to release the energy stored in ammonia is...Ammonia has emerged as a promising energy carrier owing to its carbon neutral content and low expense in long-range transportation.Therefore,development of a specific pathway to release the energy stored in ammonia is therefore in urgent demand.Electrochemical oxidation provides a convenient and reliable route to attain efficient utilization of ammonia.Here,we report that the high entropy(Mn,Fe,Co,Ni,Cu)_(3)O_(4)oxides can achieve high electrocatalytic activity for ammonia oxidation reaction(AOR)in non-aqueous solutions.The AOR onset overpotential of(Mn,Fe,Co,Ni,Cu)_(3)O_(4)is 0.70 V,which is nearly 0.2 V lower than that of their most active single metal cation counterpart.The mass spectroscopy study reveals that(Mn,Fe,Co,Ni,Cu)_(3)O_(4)preferentially oxidizes ammonia to environmentally friendly diatomic nitrogen with a Faradic efficiency of over 85%.The Xray photoelectron spectroscopy(XPS)result indicates that the balancing metal d-band of Mn and Cu cations helps retain a longlasting electrocatalytic activity.Overall,this work introduces a new family of earth-abundant transition metal high entropy oxide electrocatalysts for AOR,thus heralding a new paradigm of catalyst design for enabling ammonia as an energy carrier.展开更多
Designing feasible electrocatalysts towards oxygen reduction reaction(ORR)requires advancement in both activity and stability,where attaining high stability is of extreme importance as the catalysts are expected to wo...Designing feasible electrocatalysts towards oxygen reduction reaction(ORR)requires advancement in both activity and stability,where attaining high stability is of extreme importance as the catalysts are expected to work efficiently under frequent start-up/shut down circumstances for at least several thousand hours.Alloying platinum with early transition metals(i.e.,Pt–La alloy)is revealed as efficient catalysts construction strategy to potentially satisfy these demands.Here we report a Pt5La intermetallic compound synthesized by a novel and facile strategy.Due to the strong electronic interactions between Pt and La,the resultant Pt5La alloy catalyst exhibits enhanced activity with half wave of 0.92 V and mass activity of 0.49 A·mgPt^(−1),which strictly follows the 4e transfer pathway.More importantly,the catalyst performs superior stability during 30,000 cycles of accelerated stressed test(AST)with mass activity retention of 93.9%.This study provides new opportunities for future applications of Pt-rare earth metal alloy with excellent electrocatalytic properties.展开更多
Virtual marine scene authoring plays an important role in generating large-scale 3D scenes and it has a wide range of applications in computer animation and simulation.Existing marine scene authoring methods either pr...Virtual marine scene authoring plays an important role in generating large-scale 3D scenes and it has a wide range of applications in computer animation and simulation.Existing marine scene authoring methods either produce periodic patterns or generate unnatural group distributions when tiling marine entities such as schools of fish and groups of reefs.To this end,we propose a new large-scale marine scene authoring method based on real examples in order to create more natural and realistic results.Our method first extracts the distribution of multiple marine entities from real images to create Octahedral Blocks,and then we use a modified Wang Cubes algorithm to quickly tile the 3D marine scene.As a result,our method is able to generate aperiodic tiling results with diverse distributions of density and orientation of entities.We validate the effectiveness of our method through intensive comparative experiments.User study results show that our method can generate satisfactory results which are in accord with human preferences.展开更多
基金financially supported by the National Natural Science Foundation of China (22279083,22109166,52202183)Guangdong Basic and Applied Basic Research Foundation (Grant No.2019A1515011136,2022B1515120006,2023B1515120041,2414050001473)+3 种基金Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar Funded SchemeGuangdong Provincial Key Laboratory Program (2021B1212040001)from the Department of Science and Technology of Guangdong ProvinceBeijing Institute of TechnologySongshan Lake Materials Laboratory。
文摘Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems.
基金This research was financially supported under the Westlake Multidisciplinary Research Initiative Center(MRIC)Seed Fund(Grant No.MRIC20200101).
文摘Metal oxide thin-films transistors(TFTs)produced from solution-based printing techniques can lead to large-area electronics with low cost.However,the performance of current printed devices is inferior to those from vacuum-based methods due to poor film uniformity induced by the“coffeering”effect.Here,we report a novel approach to print highperformance indium tin oxide(ITO)-based TFTs and logic inverters by taking advantage of such notorious effect.ITO has high electrical conductivity and is generally used as an electrode material.However,by reducing the film thickness down to nanometers scale,the carrier concentration of ITO can be effectively reduced to enable new applications as active channels in transistors.The ultrathin(~10-nm-thick)ITO film in the center of the coffee-ring worked as semiconducting channels,while the thick ITO ridges(>18-nm-thick)served as the contact electrodes.The fully inkjet-printed ITO TFTs exhibited a high saturation mobility of 34.9 cm2 V^(−1) s^(−1) and a low subthreshold swing of 105 mV dec^(−1).In addition,the devices exhibited excellent electrical stability under positive bias illumination stress(PBIS,ΔV_(th)=0.31 V)and negative bias illuminaiton stress(NBIS,ΔV_(th)=−0.29 V)after 10,000 s voltage bias tests.More remarkably,fully printed n-type metal–oxide–semiconductor(NMOS)inverter based on ITO TFTs exhibited an extremely high gain of 181 at a low-supply voltage of 3 V,promising for advanced electronics applications.
基金supported by grants from the National Key R&D Program of China(2016YFD040024)the Agricultural Science and Technology Innovation Program of China(CAAS-ASTIP-lBFC)the National Natural Science Foundation of China(31772323,31871678,and 31972000).
文摘Garlic,an economically important vegetable,spice,and medicinal crop,produces highly enlarged bulbs and unique organosulfur compounds.Here,we report a chromosome-level genome assembly for garlic,with a total size of approximately 16.24 Gb,as well as the annotation of 57561 predicted protein-coding genes,making garlic the first Allium species with a sequenced genome.Analysis of this garlic genome assembly reveals a recent burst of transposable elements,explaining the substantial expansion of the garlic genome.We examined the evolution of certain genes associated with the biosynthesis of allicin and inulin neoseries-type fructans,and provided new insights into the biosynthesis of these two compounds.Furthermore,a large-scale transcriptome was produced to characterize the expression patterns of garlic genes in different tissues and at various growth stages of enlarged bulbs.The reference genome and large-scale transcriptome data generated in this study provide valuable new resources for research on garlic biology and breeding.
基金supported by the Energy Research Seed Grant from Duke Energy Initiative,the National Science Foundation(Nos.CHE-1565657 and CHE-1954838)the Army Research Office(W911NFN-18-2-004)+2 种基金S.H.and P.N.are both supported by fellowships from Department of Chemistry at Duke UniversityThis work was performed in part at the Duke University Shared Materials Instrumentation Facility(SMIF),a member of the North Carolina Research Triangle Nanotechnology Network(RTNN)which is supported by the National Science Foundation(award number ECCS-2025064)as part of the National Nanotechnology Coordinated Infrastructure(NNCI).
文摘Ammonia has emerged as a promising energy carrier owing to its carbon neutral content and low expense in long-range transportation.Therefore,development of a specific pathway to release the energy stored in ammonia is therefore in urgent demand.Electrochemical oxidation provides a convenient and reliable route to attain efficient utilization of ammonia.Here,we report that the high entropy(Mn,Fe,Co,Ni,Cu)_(3)O_(4)oxides can achieve high electrocatalytic activity for ammonia oxidation reaction(AOR)in non-aqueous solutions.The AOR onset overpotential of(Mn,Fe,Co,Ni,Cu)_(3)O_(4)is 0.70 V,which is nearly 0.2 V lower than that of their most active single metal cation counterpart.The mass spectroscopy study reveals that(Mn,Fe,Co,Ni,Cu)_(3)O_(4)preferentially oxidizes ammonia to environmentally friendly diatomic nitrogen with a Faradic efficiency of over 85%.The Xray photoelectron spectroscopy(XPS)result indicates that the balancing metal d-band of Mn and Cu cations helps retain a longlasting electrocatalytic activity.Overall,this work introduces a new family of earth-abundant transition metal high entropy oxide electrocatalysts for AOR,thus heralding a new paradigm of catalyst design for enabling ammonia as an energy carrier.
基金supported by National Key R&D Program of China(No.2021YFA1501101)the National Natural Science Foundation of China(Nos.21875243,21673220,21733004,and U1601211)+1 种基金the Jilin Province Science and Technology Development Program(Nos.20190201270JC,20180101030JC,and 20200201001JC)Dalian National Laboratory for Clean Energy(DNL),Chinese Academy of Sciences(CAS),and the Research Innovation Fund(No.DNL202010).
文摘Designing feasible electrocatalysts towards oxygen reduction reaction(ORR)requires advancement in both activity and stability,where attaining high stability is of extreme importance as the catalysts are expected to work efficiently under frequent start-up/shut down circumstances for at least several thousand hours.Alloying platinum with early transition metals(i.e.,Pt–La alloy)is revealed as efficient catalysts construction strategy to potentially satisfy these demands.Here we report a Pt5La intermetallic compound synthesized by a novel and facile strategy.Due to the strong electronic interactions between Pt and La,the resultant Pt5La alloy catalyst exhibits enhanced activity with half wave of 0.92 V and mass activity of 0.49 A·mgPt^(−1),which strictly follows the 4e transfer pathway.More importantly,the catalyst performs superior stability during 30,000 cycles of accelerated stressed test(AST)with mass activity retention of 93.9%.This study provides new opportunities for future applications of Pt-rare earth metal alloy with excellent electrocatalytic properties.
基金Xinjie Wang was supported by the Shandong Provincial Natu-ral Science Foundation of China(Grant No.ZR2021QF124)China Postdoctoral Science Foundation(Grant No.2021M703031)+2 种基金Qingdao Postdoctoral Applied Research Foundation,China,and the Open Project Program of the State Key Lab of CAD&CG(Grant No.A2219)Zhejiang University.Xiaogang Jin was supported by the National Natural Science Foundation of China(Grant No.62036010)Yucheng Wang was supported by the National Key Research and Development Program of China(Grant No.2020YFB0204804).
文摘Virtual marine scene authoring plays an important role in generating large-scale 3D scenes and it has a wide range of applications in computer animation and simulation.Existing marine scene authoring methods either produce periodic patterns or generate unnatural group distributions when tiling marine entities such as schools of fish and groups of reefs.To this end,we propose a new large-scale marine scene authoring method based on real examples in order to create more natural and realistic results.Our method first extracts the distribution of multiple marine entities from real images to create Octahedral Blocks,and then we use a modified Wang Cubes algorithm to quickly tile the 3D marine scene.As a result,our method is able to generate aperiodic tiling results with diverse distributions of density and orientation of entities.We validate the effectiveness of our method through intensive comparative experiments.User study results show that our method can generate satisfactory results which are in accord with human preferences.