期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Computer vision-based limestone rock-type classification using probabilistic neural network 被引量:18
1
作者 Ashok Kumar Patel snehamoy chatterjee 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期53-60,共8页
Proper quality planning of limestone raw materials is an essential job of maintaining desired feed in cement plant. Rock-type identification is an integrated part of quality planning for limestone mine. In this paper,... Proper quality planning of limestone raw materials is an essential job of maintaining desired feed in cement plant. Rock-type identification is an integrated part of quality planning for limestone mine. In this paper, a computer vision-based rock-type classification algorithm is proposed for fast and reliable identification without human intervention. A laboratory scale vision-based model was developed using probabilistic neural network(PNN) where color histogram features are used as input. The color image histogram-based features that include weighted mean, skewness and kurtosis features are extracted for all three color space red, green, and blue. A total nine features are used as input for the PNN classification model. The smoothing parameter for PNN model is selected judicially to develop an optimal or close to the optimum classification model. The developed PPN is validated using the test data set and results reveal that the proposed vision-based model can perform satisfactorily for classifying limestone rocktypes. Overall the error of mis-classification is below 6%. When compared with other three classification algorithms, it is observed that the proposed method performs substantially better than all three classification algorithms. 展开更多
关键词 Supervised classification Probabilistic neural network Histogram based features Smoothing parameter LIMESTONE
下载PDF
Design and development of a machine vision system using artificial neural network-based algorithm for automated coal characterization 被引量:2
2
作者 Amit Kumar Gorai Simit Raval +2 位作者 Ashok Kumar Patel snehamoy chatterjee Tarini Gautam 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第4期737-755,共19页
Coal is heterogeneous in nature,and thus the characterization of coal is essential before its use for a specific purpose.Thus,the current study aims to develop a machine vision system for automated coal characterizati... Coal is heterogeneous in nature,and thus the characterization of coal is essential before its use for a specific purpose.Thus,the current study aims to develop a machine vision system for automated coal characterizations.The model was calibrated using 80 image samples that are captured for different coal samples in different angles.All the images were captured in RGB color space and converted into five other color spaces(HSI,CMYK,Lab,xyz,Gray)for feature extraction.The intensity component image of HSI color space was further transformed into four frequency components(discrete cosine transform,discrete wavelet transform,discrete Fourier transform,and Gabor filter)for the texture features extraction.A total of 280 image features was extracted and optimized using a step-wise linear regression-based algorithm for model development.The datasets of the optimized features were used as an input for the model,and their respective coal characteristics(analyzed in the laboratory)were used as outputs of the model.The R-squared values were found to be 0.89,0.92,0.92,and 0.84,respectively,for fixed carbon,ash content,volatile matter,and moisture content.The performance of the proposed artificial neural network model was also compared with the performances of performances of Gaussian process regression,support vector regression,and radial basis neural network models.The study demonstrates the potential of the machine vision system in automated coal characterization. 展开更多
关键词 Coal characterization Machine vision system Artificial neural network Gaussian process regression
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部