Objective To investigate the association between preoperative,operative,and postoperative factors and persistent pleural effusion after the extracardiac Fontan procedure. Methods Ninety-five consecutive patients diagn...Objective To investigate the association between preoperative,operative,and postoperative factors and persistent pleural effusion after the extracardiac Fontan procedure. Methods Ninety-five consecutive patients diagnosed with univentricular heart underwent extracardiac connection using Gore-Tax conduits at the Department of Children’s Heart Centre,Justus-Liebig-University Giessen in Germany from June 1996 to July 2007. The outcome measures were duration and volume of chest tube drainage after surgical intervention. The investigated factors included age and weight at the time of operation,anatomical diagnosis,preoperative oxygen saturation,mean pulmonary artery pressure,ventricular end-diastolic pressure,fenestration,cardiopulmonary bypass time,conduit size,postoperative pulmonary artery pressure,administration of angiotensin-converting enzyme inhibitors,and postoperative infection. Associations between these factors and persistent pleural effusion after the extracardiac Fontan procedure were analyzed. Results Every patient suffered postoperative effusion. The median duration of postoperative chest tube drainage was 9 days (range,3-69 days),and the median volume was 12 mL·kg-1·d-1 (range,2.0-37.5 mL·kg-1·d-1). Thirty-seven (38.9%) patients had pleural drainage for more than 15 days,and the volume in 35 (36.8%) patients exceeded 25 mL·kg-1·d-1. Nineteen (20%) patients required placement of additional chest tubes for re-accumulation of pleural effusion after removal of previous chest tubes. Fifteen (17.8%) patients were hospitalized again due to pleural effusion after discharge. The median length of hospital stay after the operation was 14 days (range,4-78 days). Multivariate analysis results showed that non-fenestration,low preoperative oxygen saturation,and postoperative infections were independent risk factors for prolonged duration of pleural drainage (P<0.05). Long cardiopulmonary bypass time,non-fenestration,small conduit size,and low preoperative oxygen saturation were independent risk factors for excessive volume of pleural drainage (P<0.05).Conclusions For reduing postoperative duration and volume of pleural drainage following Fontan procedure,it seems to be important to improve the preoperative oxygen saturation,use large size of conduit,shorten cardiopulmonary bypass time,and make fenestration during the operation,as well as avoid postoperative infections.展开更多
The energy spectrum of energetic electrons is a key factor representing the dynamic variations of Earth’s Van Allen radiation belts.Increased measurements have indicated that the commonly used Maxwellian and Kappa di...The energy spectrum of energetic electrons is a key factor representing the dynamic variations of Earth’s Van Allen radiation belts.Increased measurements have indicated that the commonly used Maxwellian and Kappa distributions are inadequate for capturing the realistic spectral distributions of radiation belt electrons.Here we adopt the Kappa-type(KT)distribution as the fitting function and perform a statistical analysis to investigate the radiation belt electron flux spectra observed by the Van Allen Probes.By calculating the optimal values of the key KT distribution parameters(i.e.,κandθ2)from the observed spectral shapes,we fit the radiation belt electron fluxes at different L-shells under different geomagnetic conditions.In this manner,we obtain typical values of the KT distribution parameters,which are statistically feasible for modeling the radiation belt electron flux profiles during either geomagnetically quiet or active periods.A comparison of the KT distribution model results with those using the Maxwellian or Kappa distribution reveals the advantage of the KT distribution for studying the overall properties of the radiation belt electron spectral distribution,which has important implications for deepening the current understanding of the radiation belt electron dynamics under evolving geomagnetic conditions.展开更多
为了研究变循环发动机(Variable Cycle Engine,VCE)多维度仿真模型中整机零维仿真模型与核心机驱动风扇级(Core Driven Fan Stage,CDFS)三维仿真模型之间边界参数传递处理方式对计算结果的影响,建立了CDFS和前可变面积涵道引射器(Forwar...为了研究变循环发动机(Variable Cycle Engine,VCE)多维度仿真模型中整机零维仿真模型与核心机驱动风扇级(Core Driven Fan Stage,CDFS)三维仿真模型之间边界参数传递处理方式对计算结果的影响,建立了CDFS和前可变面积涵道引射器(Forward Variable Area Bypass Injector,FVABI)耦合三维仿真模型及CDFS单部件三维仿真模型,对比了CDFS工作特性及出口区域静压分布的差异,并采用迭代耦合方法将CDFS工作特性耦合于循环参数分析,研究了CDFS出口静压分布差异对VCE多维度仿真模型计算结果的影响。结果表明,耦合仿真模型中CDFS稳定工作范围随着内涵出口静压变化而变化,其数值喘振点的换算流量与CDFS单部件仿真模型存在明显的差异。FVABI部件的存在降低了内涵出口及FVABI出口的平均静压边界条件对CDFS出口区域静压分布的影响,而且CDFS内、外涵流量分配会显著影响CDFS出口区域的静压分布。因此,由耦合仿真模型得到的CDFS出口区域静压分布更为真实、合理。超声速巡航工况下,相较于在CDFS出口使用平均静压边界条件,VCE多维度仿真模型在使用真实静压分布之后,CDFS内涵压比和等熵效率基本不变,CDFS外涵压比和等熵效率分别降低了0.86%和2.27%,导致VCE推力升高了0.41%,且迭代次数大幅降低。展开更多
Radiation belt electron dropouts indicate electron flux decay to the background level during geomagnetic storms,which is commonly attributed to the effects of wave-induced pitch angle scattering and magnetopause shado...Radiation belt electron dropouts indicate electron flux decay to the background level during geomagnetic storms,which is commonly attributed to the effects of wave-induced pitch angle scattering and magnetopause shadowing.To investigate the loss mechanisms of radiation belt electron dropouts triggered by a solar wind dynamic pressure pulse event on 12 September 2014,we comprehensively analyzed the particle and wave measurements from Van Allen Probes.The dropout event was divided into three periods:before the storm,the initial phase of the storm,and the main phase of the storm.The electron pitch angle distributions(PADs)and electron flux dropouts during the initial and main phases of this storm were investigated,and the evolution of the radial profile of electron phase space density(PSD)and the(μ,K)dependence of electron PSD dropouts(whereμ,K,and L^*are the three adiabatic invariants)were analyzed.The energy-independent decay of electrons at L>4.5 was accompanied by butterfly PADs,suggesting that the magnetopause shadowing process may be the major loss mechanism during the initial phase of the storm at L>4.5.The features of electron dropouts and 90°-peaked PADs were observed only for>1 MeV electrons at L<4,indicating that the wave-induced scattering effect may dominate the electron loss processes at the lower L-shell during the main phase of the storm.Evaluations of the(μ,K)dependence of electron PSD drops and calculations of the minimum electron resonant energies of H+-band electromagnetic ion cyclotron(EMIC)waves support the scenario that the observed PSD drop peaks around L^*=3.9 may be caused mainly by the scattering of EMIC waves,whereas the drop peaks around L^*=4.6 may result from a combination of EMIC wave scattering and outward radial diffusion.展开更多
Data-driven turbulence modeling studies have reached such a stage that the basic framework is settled,but several essential issues remain that strongly affect the performance.Two problems are studied in the current re...Data-driven turbulence modeling studies have reached such a stage that the basic framework is settled,but several essential issues remain that strongly affect the performance.Two problems are studied in the current research:(1)the processing of the Reynolds stress tensor and(2)the coupling method between the machine learning model and flow solver.For the Reynolds stress processing issue,we perform the theoretical derivation to extend the relevant tensor arguments of Reynolds stress.Then,the tensor representation theorem is employed to give the complete irreducible invariants and integrity basis.An adaptive regularization term is employed to enhance the representation performance.For the coupling issue,an iterative coupling framework with consistent convergence is proposed and then applied to a canonical separated flow.The results have high consistency with the direct numerical simulation true values,which proves the validity of the current approach.展开更多
It is widely accepted that a robust and efficient method to compute the linear spatial amplified rate ought to be developed in three-dimensional (3D) boundary layers to predict the transition with the e^N method, es...It is widely accepted that a robust and efficient method to compute the linear spatial amplified rate ought to be developed in three-dimensional (3D) boundary layers to predict the transition with the e^N method, especially when the boundary layer varies significantly in the spanwise direction. The 3D-linear parabolized stability equation (3D- LPSE) approach, a 3D extension of the two-dimensional LPSE (2D-LPSE), is developed with a plane-marching procedure for investigating the instability of a 3D boundary layer with a significant spanwise variation. The method is suitable for a full Mach number region, and is validated by computing the unstable modes in 2D and 3D boundary layers, in both global and local instability problems. The predictions are in better agreement with the ones of the direct numerical simulation (DNS) rather than a 2D-eigenvalue problem (EVP) procedure. These results suggest that the plane-marching 3D-LPSE approach is a robust, efficient, and accurate choice for the local and global instability analysis in 2D and 3D boundary layers for all free-stream Mach numbers.展开更多
Using wave measurements from the EMFISIS instrument onboard Van Allen Probes,we investigate statistically the spatial distributions of the intensity of plasmaspheric hiss waves.To reproduce these empirical results,we ...Using wave measurements from the EMFISIS instrument onboard Van Allen Probes,we investigate statistically the spatial distributions of the intensity of plasmaspheric hiss waves.To reproduce these empirical results,we establish a fitting model that is a thirdorder polynomial function of L-shell,magnetic local time(MLT),magnetic latitude(MLAT),and AE*.Quantitative comparisons indicate that the model’s fitting functions can reflect favorably the major empirical features of the global distribution of hiss wave intensity,including substorm dependence and the MLT asymmetry.Our results therefore provide a useful analytic model that can be readily employed in future simulations of global radiation belt electron dynamics under the impact of plasmaspheric hiss waves in geospace.展开更多
Because radiation belt electrons can pose a potential threat to the safety of satellites orbiting in space,it is of great importance to develop a reliable model that can predict the highly dynamic variations in outer ...Because radiation belt electrons can pose a potential threat to the safety of satellites orbiting in space,it is of great importance to develop a reliable model that can predict the highly dynamic variations in outer radiation belt electron fluxes.In the present study,we develop a forecast model of radiation belt electron fluxes based on the data assimilation method,in terms of Van Allen Probe measurements combined with three-dimensional radiation belt numerical simulations.Our forecast model can cover the entire outer radiation belt with a high temporal resolution(1 hour)and a spatial resolution of 0.25 L over a wide range of both electron energy(0.1-5.0 MeV)and pitch angle(5°-90°).On the basis of this model,we forecast hourly electron fluxes for the next 1,2,and 3 days during an intense geomagnetic storm and evaluate the corresponding prediction performance.Our model can reasonably predict the stormtime evolution of radiation belt electrons with high prediction efficiency(up to~0.8-1).The best prediction performance is found for~0.3-3 MeV electrons at L=~3.25-4.5,which extends to higher L and lower energies with increasing pitch angle.Our results demonstrate that the forecast model developed can be a powerful tool to predict the spatiotemporal changes in outer radiation belt electron fluxes,and the model has both scientific significance and practical implications.展开更多
文摘Objective To investigate the association between preoperative,operative,and postoperative factors and persistent pleural effusion after the extracardiac Fontan procedure. Methods Ninety-five consecutive patients diagnosed with univentricular heart underwent extracardiac connection using Gore-Tax conduits at the Department of Children’s Heart Centre,Justus-Liebig-University Giessen in Germany from June 1996 to July 2007. The outcome measures were duration and volume of chest tube drainage after surgical intervention. The investigated factors included age and weight at the time of operation,anatomical diagnosis,preoperative oxygen saturation,mean pulmonary artery pressure,ventricular end-diastolic pressure,fenestration,cardiopulmonary bypass time,conduit size,postoperative pulmonary artery pressure,administration of angiotensin-converting enzyme inhibitors,and postoperative infection. Associations between these factors and persistent pleural effusion after the extracardiac Fontan procedure were analyzed. Results Every patient suffered postoperative effusion. The median duration of postoperative chest tube drainage was 9 days (range,3-69 days),and the median volume was 12 mL·kg-1·d-1 (range,2.0-37.5 mL·kg-1·d-1). Thirty-seven (38.9%) patients had pleural drainage for more than 15 days,and the volume in 35 (36.8%) patients exceeded 25 mL·kg-1·d-1. Nineteen (20%) patients required placement of additional chest tubes for re-accumulation of pleural effusion after removal of previous chest tubes. Fifteen (17.8%) patients were hospitalized again due to pleural effusion after discharge. The median length of hospital stay after the operation was 14 days (range,4-78 days). Multivariate analysis results showed that non-fenestration,low preoperative oxygen saturation,and postoperative infections were independent risk factors for prolonged duration of pleural drainage (P<0.05). Long cardiopulmonary bypass time,non-fenestration,small conduit size,and low preoperative oxygen saturation were independent risk factors for excessive volume of pleural drainage (P<0.05).Conclusions For reduing postoperative duration and volume of pleural drainage following Fontan procedure,it seems to be important to improve the preoperative oxygen saturation,use large size of conduit,shorten cardiopulmonary bypass time,and make fenestration during the operation,as well as avoid postoperative infections.
基金the National Natural Science Foundation of China(Grant Nos.42188101,42025404,41974186,42174188,and 42204160)the National Key R&D Program of China(Grant No.2022YFF0503700)+2 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the Fundamental Research Funds for the Central Universities(Grant Nos.2042022kf1016 and 2042023kf1025)the China Postdoctoral Science Foundation(Grant No.2022M722447)。
文摘The energy spectrum of energetic electrons is a key factor representing the dynamic variations of Earth’s Van Allen radiation belts.Increased measurements have indicated that the commonly used Maxwellian and Kappa distributions are inadequate for capturing the realistic spectral distributions of radiation belt electrons.Here we adopt the Kappa-type(KT)distribution as the fitting function and perform a statistical analysis to investigate the radiation belt electron flux spectra observed by the Van Allen Probes.By calculating the optimal values of the key KT distribution parameters(i.e.,κandθ2)from the observed spectral shapes,we fit the radiation belt electron fluxes at different L-shells under different geomagnetic conditions.In this manner,we obtain typical values of the KT distribution parameters,which are statistically feasible for modeling the radiation belt electron flux profiles during either geomagnetically quiet or active periods.A comparison of the KT distribution model results with those using the Maxwellian or Kappa distribution reveals the advantage of the KT distribution for studying the overall properties of the radiation belt electron spectral distribution,which has important implications for deepening the current understanding of the radiation belt electron dynamics under evolving geomagnetic conditions.
文摘为了研究变循环发动机(Variable Cycle Engine,VCE)多维度仿真模型中整机零维仿真模型与核心机驱动风扇级(Core Driven Fan Stage,CDFS)三维仿真模型之间边界参数传递处理方式对计算结果的影响,建立了CDFS和前可变面积涵道引射器(Forward Variable Area Bypass Injector,FVABI)耦合三维仿真模型及CDFS单部件三维仿真模型,对比了CDFS工作特性及出口区域静压分布的差异,并采用迭代耦合方法将CDFS工作特性耦合于循环参数分析,研究了CDFS出口静压分布差异对VCE多维度仿真模型计算结果的影响。结果表明,耦合仿真模型中CDFS稳定工作范围随着内涵出口静压变化而变化,其数值喘振点的换算流量与CDFS单部件仿真模型存在明显的差异。FVABI部件的存在降低了内涵出口及FVABI出口的平均静压边界条件对CDFS出口区域静压分布的影响,而且CDFS内、外涵流量分配会显著影响CDFS出口区域的静压分布。因此,由耦合仿真模型得到的CDFS出口区域静压分布更为真实、合理。超声速巡航工况下,相较于在CDFS出口使用平均静压边界条件,VCE多维度仿真模型在使用真实静压分布之后,CDFS内涵压比和等熵效率基本不变,CDFS外涵压比和等熵效率分别降低了0.86%和2.27%,导致VCE推力升高了0.41%,且迭代次数大幅降低。
基金This work was supported by the B-type Strategic Priority Program of the Chinese Academy of Sciences(grant no.XDB41000000)the National Natural Science Foundation of China(grant nos.42025404,41704162,41974186,41674163,41904144,41904143)+1 种基金the pre-research projects on Civil Aerospace Technologies(grant nos.D020303,D020308,D020104)the China National Space Administration,and the China Postdoctoral Science Foundation Project(grant no.2019M662700).We also acknowledge the Van Allen Probes mission,particularly the ECT and EMFISIS team,for providing particle and wave data.The electron flux data were obtained from http://www.rbsp-ect.lanl.gov/data_pub/.The wave data from the EMFISIS instrument were obtained from http://emfisis.physics.uiowa.edu/data/index.The solar wind parameters and geomagnetic indices were obtained from the online OMNIWeb(http://omniweb.gsfc.nasa.gov/).
文摘Radiation belt electron dropouts indicate electron flux decay to the background level during geomagnetic storms,which is commonly attributed to the effects of wave-induced pitch angle scattering and magnetopause shadowing.To investigate the loss mechanisms of radiation belt electron dropouts triggered by a solar wind dynamic pressure pulse event on 12 September 2014,we comprehensively analyzed the particle and wave measurements from Van Allen Probes.The dropout event was divided into three periods:before the storm,the initial phase of the storm,and the main phase of the storm.The electron pitch angle distributions(PADs)and electron flux dropouts during the initial and main phases of this storm were investigated,and the evolution of the radial profile of electron phase space density(PSD)and the(μ,K)dependence of electron PSD dropouts(whereμ,K,and L^*are the three adiabatic invariants)were analyzed.The energy-independent decay of electrons at L>4.5 was accompanied by butterfly PADs,suggesting that the magnetopause shadowing process may be the major loss mechanism during the initial phase of the storm at L>4.5.The features of electron dropouts and 90°-peaked PADs were observed only for>1 MeV electrons at L<4,indicating that the wave-induced scattering effect may dominate the electron loss processes at the lower L-shell during the main phase of the storm.Evaluations of the(μ,K)dependence of electron PSD drops and calculations of the minimum electron resonant energies of H+-band electromagnetic ion cyclotron(EMIC)waves support the scenario that the observed PSD drop peaks around L^*=3.9 may be caused mainly by the scattering of EMIC waves,whereas the drop peaks around L^*=4.6 may result from a combination of EMIC wave scattering and outward radial diffusion.
基金This work was supported by the National Natural Science Foundation of China(91852108,11872230 and 92152301).
文摘Data-driven turbulence modeling studies have reached such a stage that the basic framework is settled,but several essential issues remain that strongly affect the performance.Two problems are studied in the current research:(1)the processing of the Reynolds stress tensor and(2)the coupling method between the machine learning model and flow solver.For the Reynolds stress processing issue,we perform the theoretical derivation to extend the relevant tensor arguments of Reynolds stress.Then,the tensor representation theorem is employed to give the complete irreducible invariants and integrity basis.An adaptive regularization term is employed to enhance the representation performance.For the coupling issue,an iterative coupling framework with consistent convergence is proposed and then applied to a canonical separated flow.The results have high consistency with the direct numerical simulation true values,which proves the validity of the current approach.
基金Project supported by the National Natural Science Foundation of China(Nos.11272183,11572176,11402167,11202147,and 11332007)the National Program on Key Basic Research Project of China(No.2014CB744801)
文摘It is widely accepted that a robust and efficient method to compute the linear spatial amplified rate ought to be developed in three-dimensional (3D) boundary layers to predict the transition with the e^N method, especially when the boundary layer varies significantly in the spanwise direction. The 3D-linear parabolized stability equation (3D- LPSE) approach, a 3D extension of the two-dimensional LPSE (2D-LPSE), is developed with a plane-marching procedure for investigating the instability of a 3D boundary layer with a significant spanwise variation. The method is suitable for a full Mach number region, and is validated by computing the unstable modes in 2D and 3D boundary layers, in both global and local instability problems. The predictions are in better agreement with the ones of the direct numerical simulation (DNS) rather than a 2D-eigenvalue problem (EVP) procedure. These results suggest that the plane-marching 3D-LPSE approach is a robust, efficient, and accurate choice for the local and global instability analysis in 2D and 3D boundary layers for all free-stream Mach numbers.
基金supported by the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41000000)the NSFC grants 41674163, 41974186, 41704162, 41904144, and 41904143+1 种基金the pre-research projects on Civil Aerospace Technologies No. D020308, D020104 and D020303funded by China National Space Administration。
文摘Using wave measurements from the EMFISIS instrument onboard Van Allen Probes,we investigate statistically the spatial distributions of the intensity of plasmaspheric hiss waves.To reproduce these empirical results,we establish a fitting model that is a thirdorder polynomial function of L-shell,magnetic local time(MLT),magnetic latitude(MLAT),and AE*.Quantitative comparisons indicate that the model’s fitting functions can reflect favorably the major empirical features of the global distribution of hiss wave intensity,including substorm dependence and the MLT asymmetry.Our results therefore provide a useful analytic model that can be readily employed in future simulations of global radiation belt electron dynamics under the impact of plasmaspheric hiss waves in geospace.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42025404, 42188101, and 42241143)the National Key R&D Program of China (Grant Nos. 2022YFF0503700 and 2022YFF0503900)+1 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41000000)the Fundamental Research Funds for the Central Universities (Grant No. 2042022kf1012)
文摘Because radiation belt electrons can pose a potential threat to the safety of satellites orbiting in space,it is of great importance to develop a reliable model that can predict the highly dynamic variations in outer radiation belt electron fluxes.In the present study,we develop a forecast model of radiation belt electron fluxes based on the data assimilation method,in terms of Van Allen Probe measurements combined with three-dimensional radiation belt numerical simulations.Our forecast model can cover the entire outer radiation belt with a high temporal resolution(1 hour)and a spatial resolution of 0.25 L over a wide range of both electron energy(0.1-5.0 MeV)and pitch angle(5°-90°).On the basis of this model,we forecast hourly electron fluxes for the next 1,2,and 3 days during an intense geomagnetic storm and evaluate the corresponding prediction performance.Our model can reasonably predict the stormtime evolution of radiation belt electrons with high prediction efficiency(up to~0.8-1).The best prediction performance is found for~0.3-3 MeV electrons at L=~3.25-4.5,which extends to higher L and lower energies with increasing pitch angle.Our results demonstrate that the forecast model developed can be a powerful tool to predict the spatiotemporal changes in outer radiation belt electron fluxes,and the model has both scientific significance and practical implications.