期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mechanistic insight into N_2O formation during NO reduction by NH_3 over Pd/CeO_2 catalyst in the absence of O_2 被引量:6
1
作者 liping Sheng Zhaoxia Ma +6 位作者 Shiyuan Chen Jinze Lou Chengye li songda li Ze Zhang Yong Wang Hangsheng Yang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第7期1070-1077,共8页
N2O is a major by-product emitted during low-temperature selective catalytic reduction of NO with NH3(NH3-SCR), which causes a series of serious environmental problems. A full understanding of the N2O formation mechan... N2O is a major by-product emitted during low-temperature selective catalytic reduction of NO with NH3(NH3-SCR), which causes a series of serious environmental problems. A full understanding of the N2O formation mechanism is essential to suppress the N2O emission during the low-temperature NH3-SCR, and requires an intensive study of this heterogeneous catalysis process. In this study, we investigated the reaction between NH3 and NO over a Pd/CeO2 catalyst in the absence of O2, using X-ray photoelectron spectroscopy, NH3-temperature-programmed desorption, NO-temperature-programmed desorption, and in-situ Fourier-transform infrared spectroscopy. Our results indicate that the N2O formation mechanism is reaction-temperature-dependent. At temperatures below 250 ℃, the dissociation of HON, which is produced from the reaction between surface H· adatoms and adsorbed NO, is the key process for N2O formation. At temperatures above 250 ℃,the reaction between NO and surface N·, which is produced by NO dissociation, is the only route for N2O formation, and the dissociation of NO is the rate-determining step. Under optimal reaction conditions, a high performance with nearly 100% NO conversion and 100% N2 selectivity could be achieved. These results provide important information to clarify the mechanism of N2O formation and possible suppression of N2 O emission during low-temperature NH3-SCR. 展开更多
关键词 N2O formation NO reduction Pd/CeO2 catalyst in-situ IR spectroscopy Mechanism
下载PDF
Reversible transformation between terrace and step sites of Pt nanoparticles on titanium under CO and O_(2) environments
2
作者 Yang Ou songda li +5 位作者 Fei Wang Xinyi Duan Wentao Yuan Hangsheng Yang Ze Zhang Yong Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第8期2026-2033,共8页
Understanding the dynamic evolution of active sites of supported metal catalysts during catalysis is fundamentally important for improving its performance,which attracts tremendous research interests in the past decad... Understanding the dynamic evolution of active sites of supported metal catalysts during catalysis is fundamentally important for improving its performance,which attracts tremendous research interests in the past decades.There are two main surficial structures for metal catalysts:terrace sites and step sites,which exhibit catalytic activity discrepancy during catalysis.Herein,by using in situ transmission electron microscopy and in situ Fourier transform infrared spectroscopy(FTIR),the transformation between surface terrace and step sites of Pt-TiO_(2) catalysts was studied under CO and O_(2) environments.We found that the{111}step sites tend to form at{111}terrace under O_(2) environment,while these step sites prefer to transform into terrace under CO environment at elevated temperature.Meanwhile,quantitative ratios of terrace/step sites were obtained by in situ FTIR.It was found that this transformation between terrace sites and step sites was reversible during gas treatment cycling of CO and O_(2).The selective adsorption of O_(2) and CO species at different sites,which stabilized the step/terrace sites,was found to serve as the driving force for active sites transition by density functional theory calculations.Inspired by the in situ results,an enhanced catalytic activity of Pt-TiO_(2) catalysts was successfully achieved through tuning surface-active sites by gas treatments. 展开更多
关键词 In situ transmission electron microscopy Surface reconstruction Metal catalyst Active site CO oxidation reaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部