Predominantly the localization accuracy of the magnetic field-based localization approaches is severed by two limiting factors:Smartphone heterogeneity and smaller data lengths.The use of multifarioussmartphones cripp...Predominantly the localization accuracy of the magnetic field-based localization approaches is severed by two limiting factors:Smartphone heterogeneity and smaller data lengths.The use of multifarioussmartphones cripples the performance of such approaches owing to the variability of the magnetic field data.In the same vein,smaller lengths of magnetic field data decrease the localization accuracy substantially.The current study proposes the use of multiple neural networks like deep neural network(DNN),long short term memory network(LSTM),and gated recurrent unit network(GRN)to perform indoor localization based on the embedded magnetic sensor of the smartphone.A voting scheme is introduced that takes predictions from neural networks into consideration to estimate the current location of the user.Contrary to conventional magnetic field-based localization approaches that rely on the magnetic field data intensity,this study utilizes the normalized magnetic field data for this purpose.Training of neural networks is carried out using Galaxy S8 data while the testing is performed with three devices,i.e.,LG G7,Galaxy S8,and LG Q6.Experiments are performed during different times of the day to analyze the impact of time variability.Results indicate that the proposed approach minimizes the impact of smartphone variability and elevates the localization accuracy.Performance comparison with three approaches reveals that the proposed approach outperforms them in mean,50%,and 75%error even using a lesser amount of magnetic field data than those of other approaches.展开更多
The COVID-19 pandemic has caused hundreds of thousands of deaths,millions of infections worldwide,and the loss of trillions of dollars for many large economies.It poses a grave threat to the human population with an e...The COVID-19 pandemic has caused hundreds of thousands of deaths,millions of infections worldwide,and the loss of trillions of dollars for many large economies.It poses a grave threat to the human population with an excessive number of patients constituting an unprecedented challenge with which health systems have to cope.Researchers from many domains have devised diverse approaches for the timely diagnosis of COVID-19 to facilitate medical responses.In the same vein,a wide variety of research studies have investigated underlying medical conditions for indicators suggesting the severity and mortality of,and role of age groups and gender on,the probability of COVID-19 infection.This study aimed to review,analyze,and critically appraise published works that report on various factors to explain their relationship with COVID-19.Such studies span a wide range,including descriptive analyses,ratio analyses,cohort,prospective and retrospective studies.Various studies that describe indicators to determine the probability of infection among the general population,as well as the risk factors associated with severe illness and mortality,are critically analyzed and these ndings are discussed in detail.A comprehensive analysis was conducted on research studies that investigated the perceived differences in vulnerability of different age groups and genders to severe outcomes of COVID-19.Studies incorporating important demographic,health,and socioeconomic characteristics are highlighted to emphasize their importance.Predominantly,the lack of an appropriated dataset that contains demographic,personal health,and socioeconomic information implicates the efcacy and efciency of the discussed methods.Results are overstated on the part of both exclusion of quarantined and patients with mild symptoms and inclusion of the data from hospitals where the majority of the cases are potentially ill.展开更多
Indoor positioning and localization have emerged as a potential research area during the last few years owing to the wide proliferation of smartphones and the inception of location-attached services for the consumer i...Indoor positioning and localization have emerged as a potential research area during the last few years owing to the wide proliferation of smartphones and the inception of location-attached services for the consumer industry.Due to the importance of precise location information,several positioning technologies are adopted such as Wi-Fi,ultrawideband,infrared,radio frequency identification,Bluetooth beacons,pedestrian dead reckoning,and magnetic field,etc.Although Wi-Fi and magnetic field-based positioning are more attractive concerning the deployment of Wi-Fi access points and ubiquity of magnetic field data,the latter is preferred as it does not require any additional infrastructure as other approaches do.Despite the advantages of magnetic field positioning,comparing the performance of positioning and localization algorithms is very difficult due to the lack of good public datasets that cover various aspects of the magnetic field data.Available datasets do not provide the data to analyze the impact of device heterogeneity,user heights,and time-specific magnetic field mutation.Moreover,multi-floor and multibuilding data are available for the evaluation of state-of-the-art approaches.To overcome the above-mentioned issues,this study presents multi-user,multidevice,multi-building magnetic field data which is collected over a longer period.The dataset contains the data from five different smartphones including Samsung Galaxy S8,S9,A8,LG G6,and LG G7 for three geographically separated buildings.Three users including one female and two males collected the data for various path geometry and data collection scenarios.Moreover,the data contains the magnetic field samples collected on stairs to test multifloor localization.Besides the magnetic field data,the data from inertial measurement unit sensors like the accelerometer,motion sensors,and barometer is provided as well.展开更多
Precise information on indoor positioning provides a foundation for position-related customer services.Despite the emergence of several indoor positioning technologies such as ultrawideband,infrared,radio frequency id...Precise information on indoor positioning provides a foundation for position-related customer services.Despite the emergence of several indoor positioning technologies such as ultrawideband,infrared,radio frequency identification,Bluetooth beacons,pedestrian dead reckoning,and magnetic field,Wi-Fi is one of the most widely used technologies.Predominantly,Wi-Fi fingerprinting is the most popular method and has been researched over the past two decades.Wi-Fi positioning faces three core problems:device heterogeneity,robustness to signal changes caused by human mobility,and device attitude,i.e.,varying orientations.The existing methods do not cover these aspects owing to the unavailability of publicly available datasets.This study introduces a dataset that includes the Wi-Fi received signal strength(RSS)gathered using four different devices,namely Samsung Galaxy S8,S9,A8,LG G6,and LG G7,operated by three surveyors,including a female and two males.In addition,three orientations of the smartphones are used for the data collection and include multiple buildings with a multifloor environment.Various levels of human mobility have been considered in dynamic environments.To analyze the time-related impact on Wi-Fi RSS,data over 3 years have been considered.展开更多
Vehicle-to-grid technology is an emerging field that allows unused power from Electric Vehicles(EVs)to be used by the smart grid through the central aggregator.Since the central aggregator is connected to the smart gr...Vehicle-to-grid technology is an emerging field that allows unused power from Electric Vehicles(EVs)to be used by the smart grid through the central aggregator.Since the central aggregator is connected to the smart grid through a wireless network,it is prone to cyber-attacks that can be detected and mitigated using an intrusion detection system.However,existing intrusion detection systems cannot be used in the vehicle-to-grid network because of the special requirements and characteristics of the vehicle-to-grid network.In this paper,the effect of denial-of-service attacks of malicious electric vehicles on the central aggregator of the vehicle-to-grid network is investigated and an intrusion detection system for the vehicle-to-grid network is proposed.The proposed system,central aggregator–intrusion detection system(CA-IDS),works as a security gateway for EVs to analyze andmonitor incoming traffic for possible DoS attacks.EVs are registered with a Central Aggregator(CAG)to exchange authenticated messages,and malicious EVs are added to a blacklist for violating a set of predefined policies to limit their interaction with the CAG.A denial of service(DoS)attack is simulated at CAG in a vehicle-to-grid(V2G)network manipulating various network parameters such as transmission overhead,receiving capacity of destination,average packet size,and channel availability.The proposed system is compared with existing intrusion detection systems using different parameters such as throughput,jitter,and accuracy.The analysis shows that the proposed system has a higher throughput,lower jitter,and higher accuracy as compared to the existing schemes.展开更多
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2019-2016-0-00313)supervised by the IITP(Institute for Information&communication Technology Promotion)+1 种基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(2017R1E1A1A01074345).
文摘Predominantly the localization accuracy of the magnetic field-based localization approaches is severed by two limiting factors:Smartphone heterogeneity and smaller data lengths.The use of multifarioussmartphones cripples the performance of such approaches owing to the variability of the magnetic field data.In the same vein,smaller lengths of magnetic field data decrease the localization accuracy substantially.The current study proposes the use of multiple neural networks like deep neural network(DNN),long short term memory network(LSTM),and gated recurrent unit network(GRN)to perform indoor localization based on the embedded magnetic sensor of the smartphone.A voting scheme is introduced that takes predictions from neural networks into consideration to estimate the current location of the user.Contrary to conventional magnetic field-based localization approaches that rely on the magnetic field data intensity,this study utilizes the normalized magnetic field data for this purpose.Training of neural networks is carried out using Galaxy S8 data while the testing is performed with three devices,i.e.,LG G7,Galaxy S8,and LG Q6.Experiments are performed during different times of the day to analyze the impact of time variability.Results indicate that the proposed approach minimizes the impact of smartphone variability and elevates the localization accuracy.Performance comparison with three approaches reveals that the proposed approach outperforms them in mean,50%,and 75%error even using a lesser amount of magnetic field data than those of other approaches.
基金supported by the Researchers Supporting Project Number(RSP-2020/250),King Saud University,Riyadh,Saudi Arabia.
文摘The COVID-19 pandemic has caused hundreds of thousands of deaths,millions of infections worldwide,and the loss of trillions of dollars for many large economies.It poses a grave threat to the human population with an excessive number of patients constituting an unprecedented challenge with which health systems have to cope.Researchers from many domains have devised diverse approaches for the timely diagnosis of COVID-19 to facilitate medical responses.In the same vein,a wide variety of research studies have investigated underlying medical conditions for indicators suggesting the severity and mortality of,and role of age groups and gender on,the probability of COVID-19 infection.This study aimed to review,analyze,and critically appraise published works that report on various factors to explain their relationship with COVID-19.Such studies span a wide range,including descriptive analyses,ratio analyses,cohort,prospective and retrospective studies.Various studies that describe indicators to determine the probability of infection among the general population,as well as the risk factors associated with severe illness and mortality,are critically analyzed and these ndings are discussed in detail.A comprehensive analysis was conducted on research studies that investigated the perceived differences in vulnerability of different age groups and genders to severe outcomes of COVID-19.Studies incorporating important demographic,health,and socioeconomic characteristics are highlighted to emphasize their importance.Predominantly,the lack of an appropriated dataset that contains demographic,personal health,and socioeconomic information implicates the efcacy and efciency of the discussed methods.Results are overstated on the part of both exclusion of quarantined and patients with mild symptoms and inclusion of the data from hospitals where the majority of the cases are potentially ill.
基金This research was supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2020-2016-0-00313)supervised by the IITP(Institute for Information&communications Technology Planning&Evaluation)This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(2017R1E1A1A01074345).
文摘Indoor positioning and localization have emerged as a potential research area during the last few years owing to the wide proliferation of smartphones and the inception of location-attached services for the consumer industry.Due to the importance of precise location information,several positioning technologies are adopted such as Wi-Fi,ultrawideband,infrared,radio frequency identification,Bluetooth beacons,pedestrian dead reckoning,and magnetic field,etc.Although Wi-Fi and magnetic field-based positioning are more attractive concerning the deployment of Wi-Fi access points and ubiquity of magnetic field data,the latter is preferred as it does not require any additional infrastructure as other approaches do.Despite the advantages of magnetic field positioning,comparing the performance of positioning and localization algorithms is very difficult due to the lack of good public datasets that cover various aspects of the magnetic field data.Available datasets do not provide the data to analyze the impact of device heterogeneity,user heights,and time-specific magnetic field mutation.Moreover,multi-floor and multibuilding data are available for the evaluation of state-of-the-art approaches.To overcome the above-mentioned issues,this study presents multi-user,multidevice,multi-building magnetic field data which is collected over a longer period.The dataset contains the data from five different smartphones including Samsung Galaxy S8,S9,A8,LG G6,and LG G7 for three geographically separated buildings.Three users including one female and two males collected the data for various path geometry and data collection scenarios.Moreover,the data contains the magnetic field samples collected on stairs to test multifloor localization.Besides the magnetic field data,the data from inertial measurement unit sensors like the accelerometer,motion sensors,and barometer is provided as well.
基金This research was supported by the Ministry of Science and ICT(MSIT),Korea,under the Information Technology Research Center(ITRC)support program(IITP-2020-2016-0-00313)supervised by the Institute for Information&communications Technology Planning&Evaluation(IITP)This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(2017R1E1A1A01074345).
文摘Precise information on indoor positioning provides a foundation for position-related customer services.Despite the emergence of several indoor positioning technologies such as ultrawideband,infrared,radio frequency identification,Bluetooth beacons,pedestrian dead reckoning,and magnetic field,Wi-Fi is one of the most widely used technologies.Predominantly,Wi-Fi fingerprinting is the most popular method and has been researched over the past two decades.Wi-Fi positioning faces three core problems:device heterogeneity,robustness to signal changes caused by human mobility,and device attitude,i.e.,varying orientations.The existing methods do not cover these aspects owing to the unavailability of publicly available datasets.This study introduces a dataset that includes the Wi-Fi received signal strength(RSS)gathered using four different devices,namely Samsung Galaxy S8,S9,A8,LG G6,and LG G7,operated by three surveyors,including a female and two males.In addition,three orientations of the smartphones are used for the data collection and include multiple buildings with a multifloor environment.Various levels of human mobility have been considered in dynamic environments.To analyze the time-related impact on Wi-Fi RSS,data over 3 years have been considered.
基金Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1A6A1A03039493).
文摘Vehicle-to-grid technology is an emerging field that allows unused power from Electric Vehicles(EVs)to be used by the smart grid through the central aggregator.Since the central aggregator is connected to the smart grid through a wireless network,it is prone to cyber-attacks that can be detected and mitigated using an intrusion detection system.However,existing intrusion detection systems cannot be used in the vehicle-to-grid network because of the special requirements and characteristics of the vehicle-to-grid network.In this paper,the effect of denial-of-service attacks of malicious electric vehicles on the central aggregator of the vehicle-to-grid network is investigated and an intrusion detection system for the vehicle-to-grid network is proposed.The proposed system,central aggregator–intrusion detection system(CA-IDS),works as a security gateway for EVs to analyze andmonitor incoming traffic for possible DoS attacks.EVs are registered with a Central Aggregator(CAG)to exchange authenticated messages,and malicious EVs are added to a blacklist for violating a set of predefined policies to limit their interaction with the CAG.A denial of service(DoS)attack is simulated at CAG in a vehicle-to-grid(V2G)network manipulating various network parameters such as transmission overhead,receiving capacity of destination,average packet size,and channel availability.The proposed system is compared with existing intrusion detection systems using different parameters such as throughput,jitter,and accuracy.The analysis shows that the proposed system has a higher throughput,lower jitter,and higher accuracy as compared to the existing schemes.