Utilizing sunlight to convert CO_(2) into chemical fuels could address the greenhouse effect and fossil fuel crisis,Heterojunction structure catalysts with oxygen vacancy are attractive in the field of photocatalytic ...Utilizing sunlight to convert CO_(2) into chemical fuels could address the greenhouse effect and fossil fuel crisis,Heterojunction structure catalysts with oxygen vacancy are attractive in the field of photocatalytic CO_(2) conversion.Herein,a modified TiO_(2)/In_(2)O_(3)(R-P2 5/In_(2)O_(3-x)) type Ⅱ heterojunction composite with oxygen vacancies is designed for photocatalytic CO_(2) reduction,which exhibits excellent CO_(2) reduction activity,with a C_(2) selectivity of 56.66%(in terms of R_(electron)).In situ Fourier-transform infrared spectroscopy(DRIFTS) and time-resolved photoluminescence(TR-PL) spectroscopy are used to reveal the intermediate formation of the photocatalytic mechanism and photogenerated electron lifetime,respectively.The experimental characterizations reveal that the R-P25/In_(2)O_(3-x) composite shows a remarkable behavior for coupling C-C bonds.Besides,efficient charge separation contributes to the improved CO_(2) conversion performance of photocatalysts.This work introduces a type Ⅱ heterojunction composite photocatalyst,which promotes understanding the CO_(2) reduction mechanisms on heterojunction composites and is valuable for the development of photocatalysts.展开更多
MXene(M_(n+1)Xn)is an emerging class of layered two-dimensional(2D)materials,which are derived from their bulk-state MAX phase(M_(n+1)AXn,where M:early transition metal,A:group element 13 and 14,and X:carbon and/or ni...MXene(M_(n+1)Xn)is an emerging class of layered two-dimensional(2D)materials,which are derived from their bulk-state MAX phase(M_(n+1)AXn,where M:early transition metal,A:group element 13 and 14,and X:carbon and/or nitrogen).MXenes have found wide-ranging applications in energy storage devices,sensors,catalysis,etc.owing to their high electronic conductivity and wide range of optical absorption.However,the absence of semiconducting MXenes has limited their applications related to light emission.Research has shown that quantum dots(QDs)derived from MXene(MQDs)not only retain the properties of the parent MXene but also demonstrate significant improvement on light emission and quantum yield(QY).The optical properties and photoluminescence(PL)emission mechanisms of these light-emitting MQDs have not been comprehensively investigated.Recently,work on light-emitting MQDs has shown good progress,and MQDs exhibiting multi-color PL emission along with high QY have been fabricated.The synthesis methods also play a vital role in determining the light emission properties of these MQDs.This review provides an overview of light-emitting MQDs and their synthesis methods,optical properties,and applications in various optical,sensory,and imaging devices.The future prospects of light-emitting MQDs are also discussed to provide an insight that helps to further advance the progress on MQDs.展开更多
基金National Research Foundation (NRF) of Korea grant funded by the Korea Government (MSIT) (NRF-2022R1A2C2093415)partially funding from the Circle Foundation (Republic of Korea) (Grant Number: 2023 TCF Innovative Science Project-03))partially Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (2022R1A6C101A751)。
文摘Utilizing sunlight to convert CO_(2) into chemical fuels could address the greenhouse effect and fossil fuel crisis,Heterojunction structure catalysts with oxygen vacancy are attractive in the field of photocatalytic CO_(2) conversion.Herein,a modified TiO_(2)/In_(2)O_(3)(R-P2 5/In_(2)O_(3-x)) type Ⅱ heterojunction composite with oxygen vacancies is designed for photocatalytic CO_(2) reduction,which exhibits excellent CO_(2) reduction activity,with a C_(2) selectivity of 56.66%(in terms of R_(electron)).In situ Fourier-transform infrared spectroscopy(DRIFTS) and time-resolved photoluminescence(TR-PL) spectroscopy are used to reveal the intermediate formation of the photocatalytic mechanism and photogenerated electron lifetime,respectively.The experimental characterizations reveal that the R-P25/In_(2)O_(3-x) composite shows a remarkable behavior for coupling C-C bonds.Besides,efficient charge separation contributes to the improved CO_(2) conversion performance of photocatalysts.This work introduces a type Ⅱ heterojunction composite photocatalyst,which promotes understanding the CO_(2) reduction mechanisms on heterojunction composites and is valuable for the development of photocatalysts.
基金supported by National Research Foundation of Korea(2019R1A2C1006586).
文摘MXene(M_(n+1)Xn)is an emerging class of layered two-dimensional(2D)materials,which are derived from their bulk-state MAX phase(M_(n+1)AXn,where M:early transition metal,A:group element 13 and 14,and X:carbon and/or nitrogen).MXenes have found wide-ranging applications in energy storage devices,sensors,catalysis,etc.owing to their high electronic conductivity and wide range of optical absorption.However,the absence of semiconducting MXenes has limited their applications related to light emission.Research has shown that quantum dots(QDs)derived from MXene(MQDs)not only retain the properties of the parent MXene but also demonstrate significant improvement on light emission and quantum yield(QY).The optical properties and photoluminescence(PL)emission mechanisms of these light-emitting MQDs have not been comprehensively investigated.Recently,work on light-emitting MQDs has shown good progress,and MQDs exhibiting multi-color PL emission along with high QY have been fabricated.The synthesis methods also play a vital role in determining the light emission properties of these MQDs.This review provides an overview of light-emitting MQDs and their synthesis methods,optical properties,and applications in various optical,sensory,and imaging devices.The future prospects of light-emitting MQDs are also discussed to provide an insight that helps to further advance the progress on MQDs.