期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
An Ensemble Based Approach for Sentiment Classification in Asian Regional Language
1
作者 Mahesh B.Shelke Jeong Gon Lee +4 位作者 sovan samanta Sachin N.Deshmukh G.Bhalke Daulappa Rahul B.Mannade Arun Kumar Sivaraman 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2457-2468,共12页
In today’s digital world,millions of individuals are linked to one another via the Internet and social media.This opens up new avenues for information exchange with others.Sentiment analysis(SA)has gotten a lot of at... In today’s digital world,millions of individuals are linked to one another via the Internet and social media.This opens up new avenues for information exchange with others.Sentiment analysis(SA)has gotten a lot of attention during the last decade.We analyse the challenges of Sentiment Analysis(SA)in one of the Asian regional languages known as Marathi in this study by providing a benchmark setup in which wefirst produced an annotated dataset composed of Marathi text acquired from microblogging websites such as Twitter.We also choose domain experts to manually annotate Marathi microblogging posts with positive,negative,and neutral polarity.In addition,to show the efficient use of the annotated dataset,an ensemble-based model for sentiment analysis was created.In contrast to others machine learning classifier,we achieved better performance in terms of accuracy for ensemble classifier with 10-fold cross-validation(cv),outcomes as 97.77%,f-score is 97.89%. 展开更多
关键词 Sentiment analysis machine learning lexical resource ensemble classifier
下载PDF
Multi-attribute Group Decision-making Based on Hesitant Bipolar-valued Fuzzy Information and Social Network
2
作者 Dhanalakshmi R sovan samanta +4 位作者 Arun Kumar Sivaraman Jeong Gon Lee Balasundaram A Sanamdikar Sanjay Tanaji Priya Ravindran 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期1939-1950,共12页
Fuzzy sets have undergone several expansions and generalisations in the literature,including Atanasov’s intuitionistic fuzzy sets,type 2 fuzzy sets,and fuzzy multisets,to name a few.They can be regarded as fuzzy mult... Fuzzy sets have undergone several expansions and generalisations in the literature,including Atanasov’s intuitionistic fuzzy sets,type 2 fuzzy sets,and fuzzy multisets,to name a few.They can be regarded as fuzzy multisets from a formal standpoint;nevertheless,their interpretation differs from the two other approaches to fuzzy multisets that are currently available.Hesitating fuzzy sets(HFS)are very useful if consultants have hesitation in dealing with group decision-making problems between several possible memberships.However,these possible memberships can be not only crisp values in[0,1],but also interval values during a practical evaluation process.Hesitant bipolar valued fuzzy set(HBVFS)is a generalization of HFS.This paper aims to introduce a general framework of multi-attribute group decision-making using social network.We propose two types of decision-making processes:Type-1 decision-making process and Type-2 decision-making process.In the Type-1 decision-making process,the experts’original opinion is proces for thefinal ranking of alternatives.In Type-2 decision making processs,there are two major aspects we consider.First,consistency tests and checking of consensus models are given for detecting that the judgments are logically rational.Otherwise,the framework demands(partial)decision-makers to review their assessments.Second,the coherence and consensus of several HBVFSs are established forfinal ranking of alternatives.The proposed framework is clarified by an example of software packages selection of a university. 展开更多
关键词 Group decision-making aggregation operators hesitant bipolar-valued fuzzy set
下载PDF
Colouring of COVID-19 Affected Region Based on Fuzzy Directed Graphs 被引量:1
3
作者 Rupkumar Mahapatra sovan samanta +4 位作者 Madhumangal Pal Jeong-Gon Lee Shah Khalid Khan Usman Naseem Robin Singh Bhadoria 《Computers, Materials & Continua》 SCIE EI 2021年第7期1219-1233,共15页
Graph colouring is the system of assigning a colour to each vertex of a graph.It is done in such a way that adjacent vertices do not have equal colour.It is fundamental in graph theory.It is often used to solve real-w... Graph colouring is the system of assigning a colour to each vertex of a graph.It is done in such a way that adjacent vertices do not have equal colour.It is fundamental in graph theory.It is often used to solve real-world problems like traffic light signalling,map colouring,scheduling,etc.Nowadays,social networks are prevalent systems in our life.Here,the users are considered as vertices,and their connections/interactions are taken as edges.Some users follow other popular users’profiles in these networks,and some don’t,but those non-followers are connected directly to the popular profiles.That means,along with traditional relationship(information flowing),there is another relation among them.It depends on the domination of the relationship between the nodes.This type of situation can be modelled as a directed fuzzy graph.In the colouring of fuzzy graph theory,edge membership plays a vital role.Edge membership is a representation of flowing information between end nodes of the edge.Apart from the communication relationship,there may be some other factors like domination in relation.This influence of power is captured here.In this article,the colouring of directed fuzzy graphs is defined based on the influence of relationship.Along with this,the chromatic number and strong chromatic number are provided,and related properties are investigated.An application regarding COVID-19 infection is presented using the colouring of directed fuzzy graphs. 展开更多
关键词 Graph colouring chromatic index directed fuzzy graphs
下载PDF
Effective Classification of Synovial Sarcoma Cancer Using Structure Features and Support Vectors
4
作者 P.Arunachalam N.Janakiraman +5 位作者 Junaid Rashid Jungeun Kim sovan samanta Usman Naseem Arun Kumar Sivaraman A.Balasundaram 《Computers, Materials & Continua》 SCIE EI 2022年第8期2521-2543,共23页
In this research work,we proposed a medical image analysis framework with two separate releases whether or not Synovial Sarcoma(SS)is the cell structure for cancer.Within this framework the histopathology images are d... In this research work,we proposed a medical image analysis framework with two separate releases whether or not Synovial Sarcoma(SS)is the cell structure for cancer.Within this framework the histopathology images are decomposed into a third-level sub-band using a two-dimensional Discrete Wavelet Transform.Subsequently,the structure features(SFs)such as PrincipalComponentsAnalysis(PCA),Independent ComponentsAnalysis(ICA)and Linear Discriminant Analysis(LDA)were extracted from this subband image representation with the distribution of wavelet coefficients.These SFs are used as inputs of the Support Vector Machine(SVM)classifier.Also,classification of PCA+SVM,ICA+SVM,and LDA+SVM with Radial Basis Function(RBF)kernel the efficiency of the process is differentiated and compared with the best classification results.Furthermore,data collected on the internet from various histopathological centres via the Internet of Things(IoT)are stored and shared on blockchain technology across a wide range of image distribution across secure data IoT devices.Due to this,the minimum and maximum values of the kernel parameter are adjusted and updated periodically for the purpose of industrial application in device calibration.Consequently,these resolutions are presented with an excellent example of a technique for training and testing the cancer cell structure prognosis methods in spindle shaped cell(SSC)histopathological imaging databases.The performance characteristics of cross-validation are evaluated with the help of the receiver operating characteristics(ROC)curve,and significant differences in classification performance between the techniques are analyzed.The combination of LDA+SVM technique has been proven to be essential for intelligent SS cancer detection in the future,and it offers excellent classification accuracy,sensitivity,specificity. 展开更多
关键词 Principal components analysis independent components analysis linear discriminant analysis support vector machine blockchain technology IoT application industry application
下载PDF
Prognostic Kalman Filter Based Bayesian Learning Model for Data Accuracy Prediction
5
作者 S.Karthik Robin Singh Bhadoria +5 位作者 Jeong Gon Lee Arun Kumar Sivaraman sovan samanta A.Balasundaram Brijesh Kumar Chaurasia S.Ashokkumar 《Computers, Materials & Continua》 SCIE EI 2022年第7期243-259,共17页
Data is always a crucial issue of concern especially during its prediction and computation in digital revolution.This paper exactly helps in providing efficient learning mechanism for accurate predictability and reduc... Data is always a crucial issue of concern especially during its prediction and computation in digital revolution.This paper exactly helps in providing efficient learning mechanism for accurate predictability and reducing redundant data communication.It also discusses the Bayesian analysis that finds the conditional probability of at least two parametric based predictions for the data.The paper presents a method for improving the performance of Bayesian classification using the combination of Kalman Filter and K-means.The method is applied on a small dataset just for establishing the fact that the proposed algorithm can reduce the time for computing the clusters from data.The proposed Bayesian learning probabilistic model is used to check the statistical noise and other inaccuracies using unknown variables.This scenario is being implemented using efficient machine learning algorithm to perpetuate the Bayesian probabilistic approach.It also demonstrates the generative function forKalman-filer based prediction model and its observations.This paper implements the algorithm using open source platform of Python and efficiently integrates all different modules to piece of code via Common Platform Enumeration(CPE)for Python. 展开更多
关键词 Bayesian learning model kalman filter machine learning data accuracy prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部