Kampong Som Basin is a Paleozoic-Mesozoic sedimentary basin located in southern Cambodia. While the sandstone of the Bokor Formation is expected to be the reservoir for hydrocarbon accumulation. Hence, this study aims...Kampong Som Basin is a Paleozoic-Mesozoic sedimentary basin located in southern Cambodia. While the sandstone of the Bokor Formation is expected to be the reservoir for hydrocarbon accumulation. Hence, this study aims to define the properties, quality, and factors that control reservoir rock quality. Sandstones of the Bokor Formation are sampled and analyzed using a helium porosimeter, nitrogen permeameter, polarized light microscope, and scanning electron microscope (SEM) to check the porosity, permeability, minerals, pore geometry, and clay minerals that influence the reservoir quality. According to the result of petrography analysis described by thin section, the sandstone samples from Bokor formation are classified as quartz arenite that composes mainly of quartz, rock fragment, mica-flake, and sericite with connected and unconnected pores of 50 μm to 500 μm with interparticle pore type. Sandstones in this formation have porosity values ranging from 6.55% to 13.19%, and permeability values ranging from 10 mD to 60 mD. The statistics of porosity and permeability of sandstone reservoirs indicate low porosity and permeability that are suggested to be fair reservoir rock for hydrocarbon accumulation. SEM results indicate that there are three types of authigenic clay minerals involving such as kaolinite, illite, and chlorite. In addition, the pore geometry, quartz overgrowth, dissolution of quartz and felspar grain filling in pore space, compaction, replacement diagenesis processes, and cementation presence of clay minerals are the main controlling factors of the sandstone reservoir from the Bokor Formation. Furthermore, this area exhibits sedimentary structures such as planar cross-bedding, cross-bedding, parallel lamination, normal grading, massive, wavy, and reverse graded bedding, which indicates these lithofacies may be deposited in shallow marine environments.展开更多
Tonle Sap sedimentary basin was considered a favorable geological condition for hydrocarbon accumulation in the onshore Cambodia. Two exposure outcrops in Battambang province, called Somlout and Takream, were selected...Tonle Sap sedimentary basin was considered a favorable geological condition for hydrocarbon accumulation in the onshore Cambodia. Two exposure outcrops in Battambang province, called Somlout and Takream, were selected to represent sediments in this basin. The sedimentology and geochemistry studies provide insights into the depositional environment of sediments using field investigation, lithological, sedimentological, paleontological, and geochemical analysis. The redox condition, water column, and depositional setting were analyzed by plotting the ratio of V vs. Cr, Uauthigenic vs. V/Cr, Sr vs. Ba, Ca vs. (Fe + Ca), and Fe<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub> vs. Al<sub>2</sub>O<sub>3</sub>/(Al<sub>2</sub>O<sub>3</sub> + Fe<sub>2</sub>O<sub>3</sub>) diagram. Moreover, these diagrams can be used to predict depositional conditions as well. Based on the results, Somlout and Takream comprise calcareous shale and limestone facies. The geochemical analysis showed that Somlout calcareous shale samples were deposited in the dysoxic freshwater of the lake setting during the regression, while Somlout limestones and Takream were deposited in high salinity seawater, oxic condition of shallow-marine water. In addition, Somlout limestones consist of fragmental fusulinid foraminifera, bivalve shelve, and bryozoan, which suggest a barrier environment. Meanwhile, Teakream consists of fine-grained calcareous shale, and lime-mudstone, which are presented to form in the quiet marine setting of the lagoon environment. Therefore, the Tonle Sap basin sediments were deposited in the Somlout area’s barrier and lake environment, and the lagoon environment for Takream.展开更多
文摘Kampong Som Basin is a Paleozoic-Mesozoic sedimentary basin located in southern Cambodia. While the sandstone of the Bokor Formation is expected to be the reservoir for hydrocarbon accumulation. Hence, this study aims to define the properties, quality, and factors that control reservoir rock quality. Sandstones of the Bokor Formation are sampled and analyzed using a helium porosimeter, nitrogen permeameter, polarized light microscope, and scanning electron microscope (SEM) to check the porosity, permeability, minerals, pore geometry, and clay minerals that influence the reservoir quality. According to the result of petrography analysis described by thin section, the sandstone samples from Bokor formation are classified as quartz arenite that composes mainly of quartz, rock fragment, mica-flake, and sericite with connected and unconnected pores of 50 μm to 500 μm with interparticle pore type. Sandstones in this formation have porosity values ranging from 6.55% to 13.19%, and permeability values ranging from 10 mD to 60 mD. The statistics of porosity and permeability of sandstone reservoirs indicate low porosity and permeability that are suggested to be fair reservoir rock for hydrocarbon accumulation. SEM results indicate that there are three types of authigenic clay minerals involving such as kaolinite, illite, and chlorite. In addition, the pore geometry, quartz overgrowth, dissolution of quartz and felspar grain filling in pore space, compaction, replacement diagenesis processes, and cementation presence of clay minerals are the main controlling factors of the sandstone reservoir from the Bokor Formation. Furthermore, this area exhibits sedimentary structures such as planar cross-bedding, cross-bedding, parallel lamination, normal grading, massive, wavy, and reverse graded bedding, which indicates these lithofacies may be deposited in shallow marine environments.
文摘Tonle Sap sedimentary basin was considered a favorable geological condition for hydrocarbon accumulation in the onshore Cambodia. Two exposure outcrops in Battambang province, called Somlout and Takream, were selected to represent sediments in this basin. The sedimentology and geochemistry studies provide insights into the depositional environment of sediments using field investigation, lithological, sedimentological, paleontological, and geochemical analysis. The redox condition, water column, and depositional setting were analyzed by plotting the ratio of V vs. Cr, Uauthigenic vs. V/Cr, Sr vs. Ba, Ca vs. (Fe + Ca), and Fe<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub> vs. Al<sub>2</sub>O<sub>3</sub>/(Al<sub>2</sub>O<sub>3</sub> + Fe<sub>2</sub>O<sub>3</sub>) diagram. Moreover, these diagrams can be used to predict depositional conditions as well. Based on the results, Somlout and Takream comprise calcareous shale and limestone facies. The geochemical analysis showed that Somlout calcareous shale samples were deposited in the dysoxic freshwater of the lake setting during the regression, while Somlout limestones and Takream were deposited in high salinity seawater, oxic condition of shallow-marine water. In addition, Somlout limestones consist of fragmental fusulinid foraminifera, bivalve shelve, and bryozoan, which suggest a barrier environment. Meanwhile, Teakream consists of fine-grained calcareous shale, and lime-mudstone, which are presented to form in the quiet marine setting of the lagoon environment. Therefore, the Tonle Sap basin sediments were deposited in the Somlout area’s barrier and lake environment, and the lagoon environment for Takream.