The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magne...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning.展开更多
We propose to use the Moon as a platform to obtain a global view of Earth's magnetosphere by a Lunar-based Soft X-ray Imager(LSXI).LSXI is a wide field-of-view Soft X-ray telescope,which can obtain X-ray images of...We propose to use the Moon as a platform to obtain a global view of Earth's magnetosphere by a Lunar-based Soft X-ray Imager(LSXI).LSXI is a wide field-of-view Soft X-ray telescope,which can obtain X-ray images of Earth's magnetosphere based on the solar wind charge exchange(SWCX)X-ray emission.Global perspective is crucial to understand the overall interaction of the solar wind with magnetosphere.LSXI is capable of continuously monitoring the evolution of geospace conditions under the impact of the solar wind by simultaneous observation of the bow shock,magnetosheath,magnetopause and cusps for the first time.This proposal is answering the call for the Chinese Lunar Exploration Program Phase IV.展开更多
Imaging techniques provide essential information in astronomical and space physics studies.The Soft X-ray Imager(SXI)will obtain images of the Earth’s magnetosphere via the solar wind charge exchange process in a glo...Imaging techniques provide essential information in astronomical and space physics studies.The Soft X-ray Imager(SXI)will obtain images of the Earth’s magnetosphere via the solar wind charge exchange process in a global view.However,it is a challenge to reconstruct its 3-D structures from the observed 2-D image(s).In this paper,a recently proposed method,Tangent Fitting Approach(TFA),is validated to reconstruct the large-scale magnetopause from a single X-ray image obtained by instrument simulation.It is revealed that the large-scale magnetopause under a medium solar wind number density can be well reconstructed,although the locations of maximum X-ray photon counts are scattered in the image due to instrumental effects and diffusive sky background.Higher solar wind number density leads to stronger signals and further leads to better reconstruction results.For lower solar wind density,the X-ray maximum photon counts may not be identified from the SXI simulations,preprocessing of the images shall be considered before applying TFA.Furthermore,the subsolar magnetopause can be well derived when the satellite is on the dayside orbits.展开更多
基金support from the UK Space Agency under Grant Number ST/T002964/1partly supported by the International Space Science Institute(ISSI)in Bern,through ISSI International Team Project Number 523(“Imaging the Invisible:Unveiling the Global Structure of Earth’s Dynamic Magnetosphere”)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning.
基金supported by the National Natural Science Foundation of China(Grant Nos.41731070,41974211,41774173,41731070)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDJ-SSW-JSC028)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(Grant Nos.XDA15052500,XDA15350201)。
文摘We propose to use the Moon as a platform to obtain a global view of Earth's magnetosphere by a Lunar-based Soft X-ray Imager(LSXI).LSXI is a wide field-of-view Soft X-ray telescope,which can obtain X-ray images of Earth's magnetosphere based on the solar wind charge exchange(SWCX)X-ray emission.Global perspective is crucial to understand the overall interaction of the solar wind with magnetosphere.LSXI is capable of continuously monitoring the evolution of geospace conditions under the impact of the solar wind by simultaneous observation of the bow shock,magnetosheath,magnetopause and cusps for the first time.This proposal is answering the call for the Chinese Lunar Exploration Program Phase IV.
基金supported by the National Natural Science Foundation of China(Grant Nos.41731070,41974211,42074202,41774173)the Key Research Program of Frontier Sciences CAS(Grant No.QYZDJ-SSW-JSC028)+1 种基金the Strategic Pioneer Program on Space Science,CAS(Grant Nos.XDA15052500,XDA15350201)supported by the Youth Innovation Promotion Association of CAS(Grant No.Y202045)。
文摘Imaging techniques provide essential information in astronomical and space physics studies.The Soft X-ray Imager(SXI)will obtain images of the Earth’s magnetosphere via the solar wind charge exchange process in a global view.However,it is a challenge to reconstruct its 3-D structures from the observed 2-D image(s).In this paper,a recently proposed method,Tangent Fitting Approach(TFA),is validated to reconstruct the large-scale magnetopause from a single X-ray image obtained by instrument simulation.It is revealed that the large-scale magnetopause under a medium solar wind number density can be well reconstructed,although the locations of maximum X-ray photon counts are scattered in the image due to instrumental effects and diffusive sky background.Higher solar wind number density leads to stronger signals and further leads to better reconstruction results.For lower solar wind density,the X-ray maximum photon counts may not be identified from the SXI simulations,preprocessing of the images shall be considered before applying TFA.Furthermore,the subsolar magnetopause can be well derived when the satellite is on the dayside orbits.