This paper proposes a parity relation based fault estimation for a class of nonlinear systems which can be modelled by Takagi-Sugeno (TS) fuzzy models. The design of a parity relation based residual generator is for...This paper proposes a parity relation based fault estimation for a class of nonlinear systems which can be modelled by Takagi-Sugeno (TS) fuzzy models. The design of a parity relation based residual generator is formulated in terms of a family of linear matrix inequalities (LMIs). A numerical example is provided to illustrate the effectiveness of the proposed design techniques.展开更多
This paper deals with the problem of H∞ fault estimation for linear time-delay systems in finite frequency domain.First a generalized coordinate change is applied to the original system such that in the new coordinat...This paper deals with the problem of H∞ fault estimation for linear time-delay systems in finite frequency domain.First a generalized coordinate change is applied to the original system such that in the new coordinates all the time-delay terms are injected by the system's input and output.Then an observer-based H∞ fault estimator with input and output injections is proposed for fault estimation with known frequency range.With the aid of Generalized Kalman-Yakubovich-Popov lemma,sufficient conditions on the existence of the H∞ fault estimator are derived and a solution to the observer gain matrices is obtained by solving a set of linear matrix inequalities.Finally,a numerical example is given to illustrate the effectiveness of the proposed method.展开更多
In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to d...In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to directly identify parameters of the observer-based residual generator based on a numerically reliable data equation obtained by filtering and sampling the input and output signals.展开更多
基金This work was supported by the Alexander von Humboldt Foundation.
文摘This paper proposes a parity relation based fault estimation for a class of nonlinear systems which can be modelled by Takagi-Sugeno (TS) fuzzy models. The design of a parity relation based residual generator is formulated in terms of a family of linear matrix inequalities (LMIs). A numerical example is provided to illustrate the effectiveness of the proposed design techniques.
基金supported in part by the National Natural Science Foundation of China (60774071)the National High Technology Research and Development Program of China (863 Program) (2008AA121302)+1 种基金the Major State Basic Research Development Program of China (973 Program) (2009CB724000)the State Scholarship Fund of China
文摘This paper deals with the problem of H∞ fault estimation for linear time-delay systems in finite frequency domain.First a generalized coordinate change is applied to the original system such that in the new coordinates all the time-delay terms are injected by the system's input and output.Then an observer-based H∞ fault estimator with input and output injections is proposed for fault estimation with known frequency range.With the aid of Generalized Kalman-Yakubovich-Popov lemma,sufficient conditions on the existence of the H∞ fault estimator are derived and a solution to the observer gain matrices is obtained by solving a set of linear matrix inequalities.Finally,a numerical example is given to illustrate the effectiveness of the proposed method.
基金This work was supported was supported in part by the European Union under grant NeCST.
文摘In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to directly identify parameters of the observer-based residual generator based on a numerically reliable data equation obtained by filtering and sampling the input and output signals.