With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for clou...With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for cloud servers and edge nodes.The storage capacity of edge nodes close to users is limited.We should store hotspot data in edge nodes as much as possible,so as to ensure response timeliness and access hit rate;However,the current scheme cannot guarantee that every sub-message in a complete data stored by the edge node meets the requirements of hot data;How to complete the detection and deletion of redundant data in edge nodes under the premise of protecting user privacy and data dynamic integrity has become a challenging problem.Our paper proposes a redundant data detection method that meets the privacy protection requirements.By scanning the cipher text,it is determined whether each sub-message of the data in the edge node meets the requirements of the hot data.It has the same effect as zero-knowledge proof,and it will not reveal the privacy of users.In addition,for redundant sub-data that does not meet the requirements of hot data,our paper proposes a redundant data deletion scheme that meets the dynamic integrity of the data.We use Content Extraction Signature(CES)to generate the remaining hot data signature after the redundant data is deleted.The feasibility of the scheme is proved through safety analysis and efficiency analysis.展开更多
A new paradigm of scalable routing for ICN is to combine a geometric routing scheme with a Distributed Hash Table. However, for most routing schemes in this paradigm, when a node joins or leaves, large numbers of node...A new paradigm of scalable routing for ICN is to combine a geometric routing scheme with a Distributed Hash Table. However, for most routing schemes in this paradigm, when a node joins or leaves, large numbers of nodes, even the whole topology, need to be re-embedded, and a great number of contents need to be re-registered. In this paper, we propose D-Griffin, a geometric routing scheme on flat names for dynamic topologies. D-Griffin provides two advantages. First, it avoids re-embedding the topology by using an online greedy embedding scheme and a void handling greedy forwarding scheme. Second, it decreases the number of re-registrations by using a name mapping scheme with a tradeoff between topology independence and load balancing. Theoretical and experimental analyses show that D-Griffin provides guaranteed content lookup, low description complexity, low path stretch, scalable routing update, and acceptable load balancing.展开更多
In a periodic real-time system scheduled with the Earliest Deadline First (EDF) algorithm,it is necessary to compress some current tasks to avoid overloading if new task requests to run. Compressing a task means that ...In a periodic real-time system scheduled with the Earliest Deadline First (EDF) algorithm,it is necessary to compress some current tasks to avoid overloading if new task requests to run. Compressing a task means that its period is prolonged while its computation time keeps unchanged. An interesting problem is to find the earliest time to release new tasks without any deadline missing,that is,the earliest smooth insertion time. In this paper,a general frame to calculate the earliest time with multiple rounds of deadline checking is given,which shows that the checking can be done from the request time of the new tasks. A smart way is provided and proved,which takes the value of theΔchecking of the current round as the time step to the next. These techniques potentially reduce the amount of the calculation and the number of the rounds of the checking to get the earliest time. Simulation results are also given to support the conclusion.展开更多
The preparation of monodisperse azobenzene(Azo)polymer microspheres by dispersion polymerization was reported.The photo-induced fusion of Azo polymer microspheres was successfully achieved during the process of revers...The preparation of monodisperse azobenzene(Azo)polymer microspheres by dispersion polymerization was reported.The photo-induced fusion of Azo polymer microspheres was successfully achieved during the process of reversible trans-cistrans photoisomerization of Azo units,and induced various unique“microsphere molecular”clusters or“microsphere polymers”.Encouraged by this interesting phenomenon,microsphere clusters of different topological structures were stabilized by the in situ acetal cross-linking chemistry.The photo-induced fusion polymerization of monodisperse polymer microspheres provides a new strategy for designing photo-responsive clusters and allows for control over the mechanical properties of microspheres with high spatiotemporal resolution.展开更多
基金sponsored by the National Natural Science Foundation of China under grant number No. 62172353, No. 62302114, No. U20B2046 and No. 62172115Innovation Fund Program of the Engineering Research Center for Integration and Application of Digital Learning Technology of Ministry of Education No.1331007 and No. 1311022+1 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions Grant No. 17KJB520044Six Talent Peaks Project in Jiangsu Province No.XYDXX-108
文摘With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for cloud servers and edge nodes.The storage capacity of edge nodes close to users is limited.We should store hotspot data in edge nodes as much as possible,so as to ensure response timeliness and access hit rate;However,the current scheme cannot guarantee that every sub-message in a complete data stored by the edge node meets the requirements of hot data;How to complete the detection and deletion of redundant data in edge nodes under the premise of protecting user privacy and data dynamic integrity has become a challenging problem.Our paper proposes a redundant data detection method that meets the privacy protection requirements.By scanning the cipher text,it is determined whether each sub-message of the data in the edge node meets the requirements of the hot data.It has the same effect as zero-knowledge proof,and it will not reveal the privacy of users.In addition,for redundant sub-data that does not meet the requirements of hot data,our paper proposes a redundant data deletion scheme that meets the dynamic integrity of the data.We use Content Extraction Signature(CES)to generate the remaining hot data signature after the redundant data is deleted.The feasibility of the scheme is proved through safety analysis and efficiency analysis.
基金supported in part by the National Key Basic Research Program of China(973 Program) under Grant No. 2011CB302605,2013CB329602the National Natural Science Foundation of China under Grant No.61202457,61402149
文摘A new paradigm of scalable routing for ICN is to combine a geometric routing scheme with a Distributed Hash Table. However, for most routing schemes in this paradigm, when a node joins or leaves, large numbers of nodes, even the whole topology, need to be re-embedded, and a great number of contents need to be re-registered. In this paper, we propose D-Griffin, a geometric routing scheme on flat names for dynamic topologies. D-Griffin provides two advantages. First, it avoids re-embedding the topology by using an online greedy embedding scheme and a void handling greedy forwarding scheme. Second, it decreases the number of re-registrations by using a name mapping scheme with a tradeoff between topology independence and load balancing. Theoretical and experimental analyses show that D-Griffin provides guaranteed content lookup, low description complexity, low path stretch, scalable routing update, and acceptable load balancing.
基金Changsha Municipal Science and Technology Foundation(K15ZD053-43).
文摘In a periodic real-time system scheduled with the Earliest Deadline First (EDF) algorithm,it is necessary to compress some current tasks to avoid overloading if new task requests to run. Compressing a task means that its period is prolonged while its computation time keeps unchanged. An interesting problem is to find the earliest time to release new tasks without any deadline missing,that is,the earliest smooth insertion time. In this paper,a general frame to calculate the earliest time with multiple rounds of deadline checking is given,which shows that the checking can be done from the request time of the new tasks. A smart way is provided and proved,which takes the value of theΔchecking of the current round as the time step to the next. These techniques potentially reduce the amount of the calculation and the number of the rounds of the checking to get the earliest time. Simulation results are also given to support the conclusion.
基金National Nature Science Foundation of China,Grant/Award Numbers:92056111,21971180China Postdoctoral Science Foundation,Grant/Award Number:2022M722312。
文摘The preparation of monodisperse azobenzene(Azo)polymer microspheres by dispersion polymerization was reported.The photo-induced fusion of Azo polymer microspheres was successfully achieved during the process of reversible trans-cistrans photoisomerization of Azo units,and induced various unique“microsphere molecular”clusters or“microsphere polymers”.Encouraged by this interesting phenomenon,microsphere clusters of different topological structures were stabilized by the in situ acetal cross-linking chemistry.The photo-induced fusion polymerization of monodisperse polymer microspheres provides a new strategy for designing photo-responsive clusters and allows for control over the mechanical properties of microspheres with high spatiotemporal resolution.