The rate determining step and the energy barrier involved in hydrogen adsorption on Pt/WO3- ZrO2 were studied based on the assumption that the hydrogen adsorption occurs only through Pt sites. The rate of hydrogen ads...The rate determining step and the energy barrier involved in hydrogen adsorption on Pt/WO3- ZrO2 were studied based on the assumption that the hydrogen adsorption occurs only through Pt sites. The rate of hydrogen adsorption on Pt/WOa-ZrO2 was measured in the adsorption temperature range of 323-573 K and an initial hydrogen pressure of 50 Torr. The rates of hydrogen uptake were very high for the initial few minutes and the adsorption continued for more than 5 h below 523 K. The hydrogen uptake far exceeded the H/Pt ratio of unity for all adsorption temperatures, indicating that the adsorption of hydrogen involved the dissociative adsorption of hydrogen on Pt sites to form hydrogen atoms, the spillover of hydrogen atoms onto the surface of the WO3-ZrO2 catalyst, the diffusion of spiltover hydrogen atom over the surface of the WO3-ZrO2 catalyst, and the formation of protonic acid site originated from hydrogen atom by releasing an electron in which the electron may react with a second hydrogen atom to form a hydride near the Lewis acid site. The rate determining step was the spillover with the activation energy of 12.3 kJ/mol. The rate of hydrogen adsorption cannot be expressed by the rate equation based on the assumption that the rate determining step is the surface diffusion. The activity of Pt/WO3-ZrO2 was examined on n-heptane isomerization in which the increase of hydrogen partial pressure provided positive-effect on the conversion of n-heptane and negative-effect on the selectivity towards iso-heptane.展开更多
The effect of iridium loading on the properties and catalytic isomerization of n-heptane over Ir-HZSM-5 is studied. Ir-HZSM-5 was prepared by impregnation method and subjected to isomerization process in the presence ...The effect of iridium loading on the properties and catalytic isomerization of n-heptane over Ir-HZSM-5 is studied. Ir-HZSM-5 was prepared by impregnation method and subjected to isomerization process in the presence of flowing hydrogen gas. XRD and BET studies show that the presence of iridium stabilizes the crystalline structure of HZSM-5, leading to more ordered framework structure and larger surface area. TGA and FTIR results substantiate that iridium species interacts with OH group on the surface of HZSM-5. Pyridine FT-IR study verifies the interaction between iridium and surface OH group slightly increased the Bro¨nsted and Lewis acid sites without changing the lattice structure of HZSM-5. The presence of iridium and the increase of strong Lewis acid sites on HZSM-5 were found to bring an increase about 4.1%, 33.2% and 11.8% in conversion, selectivity and yield of n-heptane isomerization, respectively.展开更多
The effect of sulfate ion (SO4^2-) loading on the properties of Pt/SO4^2-ZrO2 and on the catalytic isomerization of n-butane to/so-butane was studied. The catalyst was prepared by impregnation of Zr(OH)4 with H2SO...The effect of sulfate ion (SO4^2-) loading on the properties of Pt/SO4^2-ZrO2 and on the catalytic isomerization of n-butane to/so-butane was studied. The catalyst was prepared by impregnation of Zr(OH)4 with H2SO4 and platinum solution followed by calcination at 600 ℃. Ammonia TPD and FT-IR were used to confirm the distribution of acid sites and the structure of the sulfate species. Nitrogen physisorption and X-ray diffraction were used to confirm the physical structures of Pt/SO4^2-ZrO2. XRD pattern showed that the presence of sulfate ion stabilized the metastable tetragonal phase of zirconia and hindered the transition of amorphous phase to monoclinic phase of zirconia. Ammonia TPD profiles indicated the distributions of weak and medium acid sites observed on 0.1 N and 1.0 N sulfate in the loaded catalysts. The addition of 2.0 N and 4.0 N sulfate ion generated strong acid site and decreased the weak and medium acid sites. However, the XRD results and the specific surface area of the catalysts indicated that the excessive amount of sulfate ion collapsed the structure of the catalyst. The catalysts showed high activity and stability for isomerization of n-butane to iso-butane at 200 ℃ under hydrogen atmosphere. The conversion of n-butane to iso-butane per specific surface area of the catalyst increased with the increasing amount of sulfate ion owing to the existence of the bidentate sulfate and/or polynucleic sulfate species ((ZrO)2SO2), which acts as an active site for the isomerization.展开更多
Ni/PtHY with different Ni loadings was prepared by impregnating HY with hexachloroplatinic acid solution and Ni2+/N,N-dimethylformamide solution. An increase in the Ni loading decreased the crystallinity, specific su...Ni/PtHY with different Ni loadings was prepared by impregnating HY with hexachloroplatinic acid solution and Ni2+/N,N-dimethylformamide solution. An increase in the Ni loading decreased the crystallinity, specific surface area and meso-micropores of the catalysts. Ni interacted with hydroxyl groups to produce IR absorption bands at 3740-3500 cm-1, Increasing Ni loadings resulted in a decrease in the intensities of the broad bands at 3730-3500 cm-1 and the sharp band at 3740 cm-1 with simultaneous development of new absorbance band at 3700 cm-1 that was attributed to (-OH)Ni. The acidity of the samples did not significantly change with Ni loadings up to 1.0 wt%, which indicated that Ni mostly interacts with non-acidic silanol groups (terminal- and structural-defect OH groups). The presence of Ni decreased the activity of PtHY toward the isomerization of n-pentane because of a decrease in the number of active protonic-acid sites that formed from molecular hydrogen. IR and ESR studies confirmed that Pt facilitated the formation of protonic-acid sites from molecular hydrogen, whereas Ni, even when combined with Pt, didn't exhibit such ability. The absence of protonic-acid sites from molecular hydrogen significantly decreased the yield of iso-pentane and markedly increased the cracking products.展开更多
文摘The rate determining step and the energy barrier involved in hydrogen adsorption on Pt/WO3- ZrO2 were studied based on the assumption that the hydrogen adsorption occurs only through Pt sites. The rate of hydrogen adsorption on Pt/WOa-ZrO2 was measured in the adsorption temperature range of 323-573 K and an initial hydrogen pressure of 50 Torr. The rates of hydrogen uptake were very high for the initial few minutes and the adsorption continued for more than 5 h below 523 K. The hydrogen uptake far exceeded the H/Pt ratio of unity for all adsorption temperatures, indicating that the adsorption of hydrogen involved the dissociative adsorption of hydrogen on Pt sites to form hydrogen atoms, the spillover of hydrogen atoms onto the surface of the WO3-ZrO2 catalyst, the diffusion of spiltover hydrogen atom over the surface of the WO3-ZrO2 catalyst, and the formation of protonic acid site originated from hydrogen atom by releasing an electron in which the electron may react with a second hydrogen atom to form a hydride near the Lewis acid site. The rate determining step was the spillover with the activation energy of 12.3 kJ/mol. The rate of hydrogen adsorption cannot be expressed by the rate equation based on the assumption that the rate determining step is the surface diffusion. The activity of Pt/WO3-ZrO2 was examined on n-heptane isomerization in which the increase of hydrogen partial pressure provided positive-effect on the conversion of n-heptane and negative-effect on the selectivity towards iso-heptane.
基金supported by the Ministry of Science,Technology and Innovation,Malaysia through E-Science Fund Research Project(No.03-01-06-SF0564 and 03-01-06-SF0289)the Hitachi Scholarship Foundation for the Gas Chromatograph Instrument Grant
文摘The effect of iridium loading on the properties and catalytic isomerization of n-heptane over Ir-HZSM-5 is studied. Ir-HZSM-5 was prepared by impregnation method and subjected to isomerization process in the presence of flowing hydrogen gas. XRD and BET studies show that the presence of iridium stabilizes the crystalline structure of HZSM-5, leading to more ordered framework structure and larger surface area. TGA and FTIR results substantiate that iridium species interacts with OH group on the surface of HZSM-5. Pyridine FT-IR study verifies the interaction between iridium and surface OH group slightly increased the Bro¨nsted and Lewis acid sites without changing the lattice structure of HZSM-5. The presence of iridium and the increase of strong Lewis acid sites on HZSM-5 were found to bring an increase about 4.1%, 33.2% and 11.8% in conversion, selectivity and yield of n-heptane isomerization, respectively.
文摘The effect of sulfate ion (SO4^2-) loading on the properties of Pt/SO4^2-ZrO2 and on the catalytic isomerization of n-butane to/so-butane was studied. The catalyst was prepared by impregnation of Zr(OH)4 with H2SO4 and platinum solution followed by calcination at 600 ℃. Ammonia TPD and FT-IR were used to confirm the distribution of acid sites and the structure of the sulfate species. Nitrogen physisorption and X-ray diffraction were used to confirm the physical structures of Pt/SO4^2-ZrO2. XRD pattern showed that the presence of sulfate ion stabilized the metastable tetragonal phase of zirconia and hindered the transition of amorphous phase to monoclinic phase of zirconia. Ammonia TPD profiles indicated the distributions of weak and medium acid sites observed on 0.1 N and 1.0 N sulfate in the loaded catalysts. The addition of 2.0 N and 4.0 N sulfate ion generated strong acid site and decreased the weak and medium acid sites. However, the XRD results and the specific surface area of the catalysts indicated that the excessive amount of sulfate ion collapsed the structure of the catalyst. The catalysts showed high activity and stability for isomerization of n-butane to iso-butane at 200 ℃ under hydrogen atmosphere. The conversion of n-butane to iso-butane per specific surface area of the catalyst increased with the increasing amount of sulfate ion owing to the existence of the bidentate sulfate and/or polynucleic sulfate species ((ZrO)2SO2), which acts as an active site for the isomerization.
基金supported by the Ministry of Higher Education, Malaysia through Fundamental Research (Grant Scheme No. 78670)the UTM Short Term Research (Grant No. 77330)
文摘Ni/PtHY with different Ni loadings was prepared by impregnating HY with hexachloroplatinic acid solution and Ni2+/N,N-dimethylformamide solution. An increase in the Ni loading decreased the crystallinity, specific surface area and meso-micropores of the catalysts. Ni interacted with hydroxyl groups to produce IR absorption bands at 3740-3500 cm-1, Increasing Ni loadings resulted in a decrease in the intensities of the broad bands at 3730-3500 cm-1 and the sharp band at 3740 cm-1 with simultaneous development of new absorbance band at 3700 cm-1 that was attributed to (-OH)Ni. The acidity of the samples did not significantly change with Ni loadings up to 1.0 wt%, which indicated that Ni mostly interacts with non-acidic silanol groups (terminal- and structural-defect OH groups). The presence of Ni decreased the activity of PtHY toward the isomerization of n-pentane because of a decrease in the number of active protonic-acid sites that formed from molecular hydrogen. IR and ESR studies confirmed that Pt facilitated the formation of protonic-acid sites from molecular hydrogen, whereas Ni, even when combined with Pt, didn't exhibit such ability. The absence of protonic-acid sites from molecular hydrogen significantly decreased the yield of iso-pentane and markedly increased the cracking products.