An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a qu...An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a quaternary ammonium phosphotungstate-based hexadecyltrimethylammonium chloride ionic liquid(CTAC-HPW)by the ion exchange method for the photocatalytic oxidative desulfurization of dibenzothiophene sulfide.The keggin structure of HPW and highly mass transfer performance of organic cations synergistically enhanced the photocatalytic activity towards the effective convertion of dibenzothiophene(DBT)with the excitation of visible light.The deep desulfurization(<10 mg·kg^(-1))is attained within 30 min,and well stability is demonstrated within 25 cycles.Moreover,the CTAC-HPW photocatalyst projects well selectivity to interference from coexisting compounds such as olefins and aromatic hydrocarbons and universality of dibenzothiophenes,for example,4-methyldibenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT).Ultimately,a possible photocatalytic desulfurization mechanism is proposed according to the Gaschromatography-mass spectrometry(GC-MS),proving that the final product is the corresponding sulfone.The trapping experiment and electron spin resonance(ESR)analysis confirmed that h^(+)and,COOH played critical roles in the oxidation process.The work offers a practicable strategy for efficiently converting DBT to DBTO_(2) with added value.展开更多
Supported ionic liquid(IL) catalysts [Cmim]PMoO/Am TiO(amorphous TiO) were synthesized through a one-step method for extraction coupled catalytic oxidative desulfurization(ECODS) system. Characterizations such as FTIR...Supported ionic liquid(IL) catalysts [Cmim]PMoO/Am TiO(amorphous TiO) were synthesized through a one-step method for extraction coupled catalytic oxidative desulfurization(ECODS) system. Characterizations such as FTIR, DRS,wide-angle XRD, Nadsorption–desorption and XPS were applied to analyze the morphology and Keggin structure of the catalysts. In ECODS with hydrogen peroxide as the oxidant, it was found that ILs with longer alkyl chains in the cationic moiety had a better effect on the removal of dibenzothiophene. The desulfurization could reach 100% under optimal conditions, and GC–MS analysis was employed to detect the oxidized product after the reaction. Factors affecting the desulfurization efficiencies were discussed, and a possible mechanism was proposed. In addition, cyclic experiments were also conducted to investigate the recyclability of the supported catalyst. The catalytic activity of [Cmim]PMoO/Am TiOonly dropped from 100% to 92.9% after ten cycles, demonstrating the good recycling performance of the catalyst and its potential industrial application.展开更多
A coralloid 3D g-C_(3)N_(4)supported VO_(2)catalyst was successfully synthesized in-situ by one-pot method,avoiding the agglomeration of VO_(2)during the reaction.The morphological and compositional information of the...A coralloid 3D g-C_(3)N_(4)supported VO_(2)catalyst was successfully synthesized in-situ by one-pot method,avoiding the agglomeration of VO_(2)during the reaction.The morphological and compositional information of the supported catalyst were investigated detailedly.30%VO_(2)/3D g-C_(3)N_(4)revealed excellent catalytic activity in aerobic oxidative desulfurization,the oxidative of dibenzothiophene(DBT),4-methyldibenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT)reached 98.6%,99%and 99.4%,respectively,under the same mild conditions.The recycling performance and the mechanism on the oxidative of DBT were studied as well.展开更多
A series of novel binary deep eutectic solvents(DESs)composed of choline chloride(ChCl)and formic acid(HCOOH)with different molar ratios have been successfully synthesized and applied in extractive desulfurization(EDS...A series of novel binary deep eutectic solvents(DESs)composed of choline chloride(ChCl)and formic acid(HCOOH)with different molar ratios have been successfully synthesized and applied in extractive desulfurization(EDS).Keggin-type polyoxometallate ionic liquid[TTPh]_(3)PW_(12)O_(40) was prepared and used as catalyst to enhance the EDS capacity by means of photocatalytic oxidative process.Both of the DESs and[TTPh]_(3)PW_(12)O_(40) ionic liquid catalyst were characterized in detail by Fourier transform infrared spectroscopy spectra(FT-IR),elemental analysis,and X-ray photoelectron spectroscopy(XPS).It was found that the molar ratios of Ch Cl:HCOOH had a major impact on desulfurization performance,and the optimal desulfurization capacity 96.5%was obtained by ChCl/5 HCOOH.Besides dibenzothiophene(DBT),the desulfurization efficiencies of 4-methylbenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT),two kinds of DBT derivatives,were also investigated under the same experimental conditions.Moreover,the free radical scavenging experiments manifested that superoxide radical(·O_(2)^(-)) and hole(h^(+)) played important roles in the desulfurization system.After further analysis of the oxidation products by gas chromatography-mass spectrometry(GC–MS),the possible reaction mechanism was proposed.Thus,photocatalytic oxidative has been proved to be one of the efficient approaches for enhancing the extractive desulfurization performance in DES.展开更多
基金the financial supports from National Natural Science Foundation of China(22172066,22378176)supported by State Key Laboratory of Heavy Oil ProcessingSupported by Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment,Suzhou University of Science and Technology。
文摘An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a quaternary ammonium phosphotungstate-based hexadecyltrimethylammonium chloride ionic liquid(CTAC-HPW)by the ion exchange method for the photocatalytic oxidative desulfurization of dibenzothiophene sulfide.The keggin structure of HPW and highly mass transfer performance of organic cations synergistically enhanced the photocatalytic activity towards the effective convertion of dibenzothiophene(DBT)with the excitation of visible light.The deep desulfurization(<10 mg·kg^(-1))is attained within 30 min,and well stability is demonstrated within 25 cycles.Moreover,the CTAC-HPW photocatalyst projects well selectivity to interference from coexisting compounds such as olefins and aromatic hydrocarbons and universality of dibenzothiophenes,for example,4-methyldibenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT).Ultimately,a possible photocatalytic desulfurization mechanism is proposed according to the Gaschromatography-mass spectrometry(GC-MS),proving that the final product is the corresponding sulfone.The trapping experiment and electron spin resonance(ESR)analysis confirmed that h^(+)and,COOH played critical roles in the oxidation process.The work offers a practicable strategy for efficiently converting DBT to DBTO_(2) with added value.
基金financially supported by the National Natural Science Foundation of China (Nos. 21576122, 21646001, 21506080)Natural Science Foundation of Jiangsu Province (Nos. BK20150485, BK20170528)+2 种基金China Postdoctoral Science Foundation (2017M611727)Jiangsu Planned Projects for Postdoctoral Research Funds (1701104B)supported by the Student Innovation and Entrepreneurship Training Program (201810299332 W)
文摘Supported ionic liquid(IL) catalysts [Cmim]PMoO/Am TiO(amorphous TiO) were synthesized through a one-step method for extraction coupled catalytic oxidative desulfurization(ECODS) system. Characterizations such as FTIR, DRS,wide-angle XRD, Nadsorption–desorption and XPS were applied to analyze the morphology and Keggin structure of the catalysts. In ECODS with hydrogen peroxide as the oxidant, it was found that ILs with longer alkyl chains in the cationic moiety had a better effect on the removal of dibenzothiophene. The desulfurization could reach 100% under optimal conditions, and GC–MS analysis was employed to detect the oxidized product after the reaction. Factors affecting the desulfurization efficiencies were discussed, and a possible mechanism was proposed. In addition, cyclic experiments were also conducted to investigate the recyclability of the supported catalyst. The catalytic activity of [Cmim]PMoO/Am TiOonly dropped from 100% to 92.9% after ten cycles, demonstrating the good recycling performance of the catalyst and its potential industrial application.
基金the financial support from National Natural Science Foundation of China(21808091 and 22178154)supported by the Student Innovation and Entrepreneurship Training Program(202210299640X)。
文摘A coralloid 3D g-C_(3)N_(4)supported VO_(2)catalyst was successfully synthesized in-situ by one-pot method,avoiding the agglomeration of VO_(2)during the reaction.The morphological and compositional information of the supported catalyst were investigated detailedly.30%VO_(2)/3D g-C_(3)N_(4)revealed excellent catalytic activity in aerobic oxidative desulfurization,the oxidative of dibenzothiophene(DBT),4-methyldibenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT)reached 98.6%,99%and 99.4%,respectively,under the same mild conditions.The recycling performance and the mechanism on the oxidative of DBT were studied as well.
基金financially supported by the National Natural Science Foundation of China(No.21808091)Natural Science Foundation of Jiangsu Province(Nos.BK20200896,BK20190243)+2 种基金Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education,Hainan Normal University(20150376)China Postdoctoral Foundation(No.2020M671365)the Student Innovation and Entrepreneurship Training Program(202010299457X)。
文摘A series of novel binary deep eutectic solvents(DESs)composed of choline chloride(ChCl)and formic acid(HCOOH)with different molar ratios have been successfully synthesized and applied in extractive desulfurization(EDS).Keggin-type polyoxometallate ionic liquid[TTPh]_(3)PW_(12)O_(40) was prepared and used as catalyst to enhance the EDS capacity by means of photocatalytic oxidative process.Both of the DESs and[TTPh]_(3)PW_(12)O_(40) ionic liquid catalyst were characterized in detail by Fourier transform infrared spectroscopy spectra(FT-IR),elemental analysis,and X-ray photoelectron spectroscopy(XPS).It was found that the molar ratios of Ch Cl:HCOOH had a major impact on desulfurization performance,and the optimal desulfurization capacity 96.5%was obtained by ChCl/5 HCOOH.Besides dibenzothiophene(DBT),the desulfurization efficiencies of 4-methylbenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT),two kinds of DBT derivatives,were also investigated under the same experimental conditions.Moreover,the free radical scavenging experiments manifested that superoxide radical(·O_(2)^(-)) and hole(h^(+)) played important roles in the desulfurization system.After further analysis of the oxidation products by gas chromatography-mass spectrometry(GC–MS),the possible reaction mechanism was proposed.Thus,photocatalytic oxidative has been proved to be one of the efficient approaches for enhancing the extractive desulfurization performance in DES.