The Bohai Sea is one of the most polluted sea areas in China.In this study,we used 2184 integrated concentrations of dissolved inorganic nitrogen(DIN)and dissolved inorganic phosphorus(DIP)in the Bohai Sea of China du...The Bohai Sea is one of the most polluted sea areas in China.In this study,we used 2184 integrated concentrations of dissolved inorganic nitrogen(DIN)and dissolved inorganic phosphorus(DIP)in the Bohai Sea of China during spring(March,April,and May),summer(June,July,and August),and autumn(October and November)from 2015 to 2022 to explore the trends and sources of nutrients variations.From 2015 to 2022,DIN showed a downward trend until 2020 and then an upward trend,whereas DIP exhibited a stable trend with a slight decrease.The concentrations of DIN and DIP had similar seasonal pattern which was the highest in autumn(0.292±0.247 mg/L for DIN and 0.013±0.016 mg/L for DIP)but lower in spring(0.267±0.238 mg/L for DIN and 0.006±0.010 mg/L for DIP)and summer(0.263±0.324 mg/L for DIN and 0.008±0.010 mg/L for DIP).Sources of DIN and DIP apportioned by the positive matrix factorization(PMF)model were riverine input,sediment resuspension,sewage discharge,atmospheric deposition,and underground input.During 2015-2022,the largest contributor to DIN was sewage discharge(28.7%)and the largest contributor to DIP was sediment resuspension(44.6%).Seasonally,DIN in spring and autumn was dominated by sewage discharge(45.4%and 27.8%,re-spectively).Whereas in summer,it was dominated by riverine input(32.4%)and atmospheric deposition(29.7%).DIP was dominated by sediment resuspension during all three seasons(35.8%-52.5%).In addition,the increase in DIN concentrations in 2021 and 2022 were mainly due to the incremental input of river discharge and atmospheric deposition caused by increased precipitation during sum-mer and autumn.展开更多
As the demand for high-quality services proliferates,an innovative network architecture,the fully-decoupled RAN(FD-RAN),has emerged for more flexible spectrum resource utilization and lower network costs.However,with ...As the demand for high-quality services proliferates,an innovative network architecture,the fully-decoupled RAN(FD-RAN),has emerged for more flexible spectrum resource utilization and lower network costs.However,with the decoupling of uplink base stations and downlink base stations in FDRAN,the traditional transmission mechanism,which relies on real-time channel feedback,is not suitable as the receiver is not able to feedback accurate and timely channel state information to the transmitter.This paper proposes a novel transmission scheme without relying on physical layer channel feedback.Specifically,we design a radio map based complex-valued precoding network(RMCPNet)model,which outputs the base station precoding based on user location.RMCPNet comprises multiple subnets,with each subnet responsible for extracting unique modal features from diverse input modalities.Furthermore,the multimodal embeddings derived from these distinct subnets are integrated within the information fusion layer,culminating in a unified representation.We also develop a specific RMCPNet training algorithm that employs the negative spectral efficiency as the loss function.We evaluate the performance of the proposed scheme on the public DeepMIMO dataset and show that RMCPNet can achieve 16%and 76%performance improvements over the conventional real-valued neural network and statistical codebook approach,respectively.展开更多
传统的以数据为中心的路由协议,往往会导致传感网中出现在大量的"能量空洞"或"热点"现象。为了克服上述现象,借助雾计算理论模型,提出了一种基于雾计算跨层感知分簇路由协议(A Cross-layer-sensing Clustering Rout...传统的以数据为中心的路由协议,往往会导致传感网中出现在大量的"能量空洞"或"热点"现象。为了克服上述现象,借助雾计算理论模型,提出了一种基于雾计算跨层感知分簇路由协议(A Cross-layer-sensing Clustering Routing Protocol Based on Fog Computing,CCRP)。该协议通过跨层映射原理,利用感知事件驱动机制将雾节点映射到传感层,构成功能强大的虚拟控制节点,将传感网分簇路由协议的控制过程上传至雾层,通过雾计算实现事件域节点分布式成簇路由汇聚中心,从而建立以映射雾节点为中心的优化数据聚合路由,取代传感网底层路由中的数据,进一步平衡并减少网络负载。在路由协议优化阶段,利用粒子群优化算法(Particle Swarm Optimizations,PSO)采用无竞争开销方式选举一组最佳节点担任簇首,能有效地均衡全网能量的开销,抑制传感器节点能量的快速消耗,延长了网络生存周期。仿真实验表明,CCRP协议能够有效抑制网络开销的同时还可以高效完成对数据的优化过程。展开更多
基金Under the auspices of National Natural Science Foundation of China(No.42177089,U1906215,41977190)。
文摘The Bohai Sea is one of the most polluted sea areas in China.In this study,we used 2184 integrated concentrations of dissolved inorganic nitrogen(DIN)and dissolved inorganic phosphorus(DIP)in the Bohai Sea of China during spring(March,April,and May),summer(June,July,and August),and autumn(October and November)from 2015 to 2022 to explore the trends and sources of nutrients variations.From 2015 to 2022,DIN showed a downward trend until 2020 and then an upward trend,whereas DIP exhibited a stable trend with a slight decrease.The concentrations of DIN and DIP had similar seasonal pattern which was the highest in autumn(0.292±0.247 mg/L for DIN and 0.013±0.016 mg/L for DIP)but lower in spring(0.267±0.238 mg/L for DIN and 0.006±0.010 mg/L for DIP)and summer(0.263±0.324 mg/L for DIN and 0.008±0.010 mg/L for DIP).Sources of DIN and DIP apportioned by the positive matrix factorization(PMF)model were riverine input,sediment resuspension,sewage discharge,atmospheric deposition,and underground input.During 2015-2022,the largest contributor to DIN was sewage discharge(28.7%)and the largest contributor to DIP was sediment resuspension(44.6%).Seasonally,DIN in spring and autumn was dominated by sewage discharge(45.4%and 27.8%,re-spectively).Whereas in summer,it was dominated by riverine input(32.4%)and atmospheric deposition(29.7%).DIP was dominated by sediment resuspension during all three seasons(35.8%-52.5%).In addition,the increase in DIN concentrations in 2021 and 2022 were mainly due to the incremental input of river discharge and atmospheric deposition caused by increased precipitation during sum-mer and autumn.
基金supported in part by the National Natural Science Foundation Original Exploration Project of China under Grant 62250004the National Natural Science Foundation of China under Grant 62271244+1 种基金the Natural Science Fund for Distinguished Young Scholars of Jiangsu Province under Grant BK20220067the Natural Sciences and Engineering Research Council of Canada (NSERC)
文摘As the demand for high-quality services proliferates,an innovative network architecture,the fully-decoupled RAN(FD-RAN),has emerged for more flexible spectrum resource utilization and lower network costs.However,with the decoupling of uplink base stations and downlink base stations in FDRAN,the traditional transmission mechanism,which relies on real-time channel feedback,is not suitable as the receiver is not able to feedback accurate and timely channel state information to the transmitter.This paper proposes a novel transmission scheme without relying on physical layer channel feedback.Specifically,we design a radio map based complex-valued precoding network(RMCPNet)model,which outputs the base station precoding based on user location.RMCPNet comprises multiple subnets,with each subnet responsible for extracting unique modal features from diverse input modalities.Furthermore,the multimodal embeddings derived from these distinct subnets are integrated within the information fusion layer,culminating in a unified representation.We also develop a specific RMCPNet training algorithm that employs the negative spectral efficiency as the loss function.We evaluate the performance of the proposed scheme on the public DeepMIMO dataset and show that RMCPNet can achieve 16%and 76%performance improvements over the conventional real-valued neural network and statistical codebook approach,respectively.
文摘传统的以数据为中心的路由协议,往往会导致传感网中出现在大量的"能量空洞"或"热点"现象。为了克服上述现象,借助雾计算理论模型,提出了一种基于雾计算跨层感知分簇路由协议(A Cross-layer-sensing Clustering Routing Protocol Based on Fog Computing,CCRP)。该协议通过跨层映射原理,利用感知事件驱动机制将雾节点映射到传感层,构成功能强大的虚拟控制节点,将传感网分簇路由协议的控制过程上传至雾层,通过雾计算实现事件域节点分布式成簇路由汇聚中心,从而建立以映射雾节点为中心的优化数据聚合路由,取代传感网底层路由中的数据,进一步平衡并减少网络负载。在路由协议优化阶段,利用粒子群优化算法(Particle Swarm Optimizations,PSO)采用无竞争开销方式选举一组最佳节点担任簇首,能有效地均衡全网能量的开销,抑制传感器节点能量的快速消耗,延长了网络生存周期。仿真实验表明,CCRP协议能够有效抑制网络开销的同时还可以高效完成对数据的优化过程。