期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Enhanced prediction of anisotropic deformation behavior using machine learning with data augmentation 被引量:1
1
作者 Sujeong Byun Jinyeong Yu +3 位作者 Seho Cheon Seong Ho Lee sung hyuk park Taekyung Lee 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期186-196,共11页
Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary w... Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary with a deformation condition.This study proposes a novel approach for accurately predicting an anisotropic deformation behavior of wrought Mg alloys using machine learning(ML)with data augmentation.The developed model combines four key strategies from data science:learning the entire flow curves,generative adversarial networks(GAN),algorithm-driven hyperparameter tuning,and gated recurrent unit(GRU)architecture.The proposed model,namely GAN-aided GRU,was extensively evaluated for various predictive scenarios,such as interpolation,extrapolation,and a limited dataset size.The model exhibited significant predictability and improved generalizability for estimating the anisotropic compressive behavior of ZK60 Mg alloys under 11 annealing conditions and for three loading directions.The GAN-aided GRU results were superior to those of previous ML models and constitutive equations.The superior performance was attributed to hyperparameter optimization,GAN-based data augmentation,and the inherent predictivity of the GRU for extrapolation.As a first attempt to employ ML techniques other than artificial neural networks,this study proposes a novel perspective on predicting the anisotropic deformation behaviors of wrought Mg alloys. 展开更多
关键词 Plastic anisotropy Compression ANNEALING Machine learning Data augmentation
下载PDF
Real-Time Tunable Gas Sensing Platform Based on SnO_(2) Nanoparticles Activated by Blue Micro-Light-Emitting Diodes
2
作者 Gi Baek Nam Jung-El Ryu +25 位作者 Tae Hoon Eom Seung Ju Kim Jun Min Suh Seungmin Lee sungkyun Choi Cheon Woo Moon Seon Ju park Soo Min Lee Byungsoo Kim sung hyuk park Jin Wook Yang Sangjin Min Sohyeon park sung Hwan Cho hyuk Jin Kim Sang Eon Jun Tae Hyung Lee Yeong Jae Kim Jae Young Kim Young Joon Hong Jong-In Shim Hyung-Gi Byun Yongjo park Inkyu park Sang-Wan Ryu Ho Won Jang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期103-119,共17页
Micro-light-emitting diodes(μLEDs)have gained significant interest as an activation source for gas sensors owing to their advantages,including room temperature operation and low power consumption.However,despite thes... Micro-light-emitting diodes(μLEDs)have gained significant interest as an activation source for gas sensors owing to their advantages,including room temperature operation and low power consumption.However,despite these benefits,challenges still exist such as a limited range of detectable gases and slow response.In this study,we present a blueμLED-integrated light-activated gas sensor array based on SnO_(2)nanoparticles(NPs)that exhibit excellent sensitivity,tunable selectivity,and rapid detection with micro-watt level power consumption.The optimal power forμLED is observed at the highest gas response,supported by finite-difference time-domain simulation.Additionally,we first report the visible light-activated selective detection of reducing gases using noble metal-decorated SnO_(2)NPs.The noble metals induce catalytic interaction with reducing gases,clearly distinguishing NH3,H2,and C2H5OH.Real-time gas monitoring based on a fully hardwareimplemented light-activated sensing array was demonstrated,opening up new avenues for advancements in light-activated electronic nose technologies. 展开更多
关键词 Micro-LED Gas sensor array Low power consumption Metal decoration Real-time detection
下载PDF
Chemical and mechanical properties of stainless, environment-friendly, and nonflammable Mg alloys (SEN alloys): A review
3
作者 Jong Un Lee Hyun Ji Kim +5 位作者 Sang-Cheol Jin Ye Jin Kim Young Min Kim Bong Sun You Jun Ho Bae sung hyuk park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期841-872,共32页
This review article provides overall understanding of stainless,environment-friendly,and nonflammable Mg alloys(SEN alloys)recently developed at the Korea Institute of Materials Science.SEN alloys are produced by addi... This review article provides overall understanding of stainless,environment-friendly,and nonflammable Mg alloys(SEN alloys)recently developed at the Korea Institute of Materials Science.SEN alloys are produced by adding small amounts of Ca and Y(each<1 wt%)into commercial Mg–Al based alloys,resulting in exceptional ignition and corrosion resistances and impressive mechanical properties.Their main advantages of SEN alloys are as follows.(1)A dense multi-oxide layer of SEN alloys comprising MgO,CaO,and Y_(2)O_(3) impedes the outward dispersion of Mg vapor and the inward penetration of O_(2) during oxidation,thereby enhancing the oxidation and ignition resistances.(2)The presence of Ca-and Y-based second-phase particles in SEN alloys can enhance their corrosion resistance because Ca-containing particles prevent the spread of corrosion,and the replacement of Al-containing particles with less noble ones containing Y(e.g.,Al–Mn–Y or Al–Y particles)retards corrosion.(3)The addition of minor amounts of Ca and Y renders excellent mechanical properties due to improved strengthening effects.These enhanced properties are attributed to more pronounced dynamic recrystallization and grain refining behaviors caused by the second-phase particles during extrusion.(4)Despite the presence of various types of second-phase particles,the fatigue properties of SEN9 alloys are similar to those of commercial AZ91 alloys.(5)Simultaneous introduction of Ca and Y suppresses the formation of Mg17Al12 discontinuous precipitates during aging,leading to the enhanced elongation of aged SEN alloys.(6)Adding mischmetal into the SEN9 alloy leads to a six-fold enhancement in extrudability.Consequently,the studies conducted on SEN alloys demonstrate their excellent ignition and corrosion resistances and mechanical properties,which broaden the industrial applications of Mg alloys by addressing their inherent weaknesses. 展开更多
关键词 SEN magnesium alloy Corrosion resistance Ignition resistance Mechanical properties Extrudability.
下载PDF
Effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on tensile and bending properties of high-Al-containing Mg alloys
4
作者 Sumi Jo Gyo Myeong Lee +2 位作者 Jong Un Lee Young Min Kim sung hyuk park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期779-793,共15页
This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The ext... This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The extruded Mg–9Al–1Zn–0.3Mn(AZ91)alloy contains lamellar-structured Mg_(17)Al_(12)discontinuous precipitates along the grain boundaries,which are formed via static precipitation during natural air cooling.The extruded Mg–11Al–1Zn–0.3Mn(AZ111)alloy contains spherical Mg_(17)Al_(12)precipitates at the grain boundaries and inside the grains,which are formed via dynamic precipitation during extrusion.Due to inhomogeneous distribution of precipitates,the AZ111 alloy consists of two different precipitate regions:precipitate-rich region with numerous precipitates and finer grains and precipitate-scarce region with a few precipitates and coarser grains.The AZ111 alloy exhibits a higher tensile strength than the AZ91 alloy because its smaller grain size and more abundant precipitates result in stronger grain-boundary hardening and precipitation hardening effects,respectively.However,the tensile elongation of the AZ111 alloy is lower than that of the AZ91 alloy because the weak cohesion between the dynamic precipitates and the matrix facilitates the crack initiation and propagation.During bending,a macrocrack initiates on the outer surface of bending specimen in both alloys.The AZ111 alloy exhibits higher bending yield strength and lower failure bending strain than the AZ91 alloy.The bending specimens of the AZ91 alloy have similar bending formability,whereas those of the AZ111 alloy exhibit considerable differences in bending formability and crack propagation behavior,depending on the distribution and number density of precipitates in the specimen.In bending specimens of the AZ111 alloy,it is found that the failure bending strain(ε_(f,bending))is inversely proportional to the area fraction of precipitates in the outer zone of bending specimen(A_(ppt)),with a relationship ofε_(f,bending)=–0.1A_(ppt)+5.86. 展开更多
关键词 Mg–Al alloy EXTRUSION BENDING Precipitation Microstructure
下载PDF
Difference in extrusion temperature dependences of microstructure and mechanical properties between extruded AZ61 and AZ91 alloys 被引量:3
5
作者 Dong Hee Lee Gyo Myeong Lee sung hyuk park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1683-1696,共14页
The effects of extrusion temperature on the microstructure and tensile properties of extruded AZ61 and AZ91 alloys are investigated by subjecting them to hot extrusion at 300 and 400℃.Although the average grain size ... The effects of extrusion temperature on the microstructure and tensile properties of extruded AZ61 and AZ91 alloys are investigated by subjecting them to hot extrusion at 300 and 400℃.Although the average grain size of the extruded AZ61 alloy slightly increases from 9.5 to 12.6μm with increasing extrusion temperature,its resultant microstructural variation is insignificant.In contrast,the average grain size of the extruded AZ91 alloy significantly increases from 5.7 to 22.5μm with increasing extrusion temperature,and the type of Mg17Al12 precipitates formed in it changes from fine dynamic precipitates with a spherical shape to coarse static precipitates with a lamellar structure.As the extrusion temperature increases,the tensile yield strength of the extruded AZ61 alloy increases from 183 to 197 MPa while that of the extruded AZ91 alloy decreases from 232 to 224 MPa.The tensile elongations of the extruded AZ61 and AZ91 alloys decrease with increasing extrusion temperature,but the degree of decrease is significant in the latter alloy.These different extrusion temperature dependences of the tensile properties of the extruded AZ61 and AZ91 alloys are discussed in terms of their microstructural characteristics,strengthening mechanisms,and crack initiation sites. 展开更多
关键词 Mg-Al-Zn alloys Extrusion temperature PRECIPITATION Strengthening mechanism Tensile properties
下载PDF
Microstructural characteristics and low-cycle fatigue properties of AZ91 and AZ91-Ca-Y alloys extruded at different temperatures 被引量:2
6
作者 Ye Jin Kim Young Min Kim +2 位作者 Jun Ho Bae Soo-Hyun Joo sung hyuk park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期892-902,共11页
The commercial AZ91 alloy and nonflammable SEN9(AZ91-0.3Ca-0.2Y,wt%)alloy are extruded at 300°C and 400°C.Their microstructure,tensile and compressive properties,and low-cycle fatigue(LCF)properties are inve... The commercial AZ91 alloy and nonflammable SEN9(AZ91-0.3Ca-0.2Y,wt%)alloy are extruded at 300°C and 400°C.Their microstructure,tensile and compressive properties,and low-cycle fatigue(LCF)properties are investigated,with particular focus on the influence of the extrusion temperature.In the AZ91 and SEN9 materials extruded at 300°C(300-materials),numerous fine Mg_(17)Al_(12)particles are inhomogeneously distributed owing to localized dynamic precipitation during extrusion,unlike those extruded at 400°C(400-materials).These fine particles suppress the coarsening of recrystallized grains,decreasing the average grain size of 300-materials.Although the four extruded materials have considerably different microstructures,the difference in their tensile yield strengths is insignificant because strong grain-boundary hardening and precipitation hardening effects in 300-materials are offset almost completely by a strong texture hardening effect in 400-materials.However,owing to their finer grains and weaker texture,300-materials have higher compressive yield strengths than400-materials.During the LCF tests,{10-12}twinning is activated at lower stresses in 400-materials than in 300-materials.Because the fatigue damage accumulated per cycle is smaller in 400-materials,they have longer fatigue lives than those of 300-materials.A fatigue life prediction model for the investigated materials is established on the basis of the relationship between the total strain energy density(ΔW_(t))and the number of cycles to fatigue failure(N_(f)),and it is expressed through a simple equation(ΔW_(t)=10·N_(f)-0.59).This model enables fatigue life prediction of both the investigated alloys regardless of the extrusion temperature and strain amplitude. 展开更多
关键词 AZ91-Ca-Y Extrusion temperature MICROSTRUCTURE Low-cycle fatigue Fatigue life prediction model
下载PDF
Acceleration of aging behavior and improvement of mechanical properties of extruded AZ80 alloy through(10–12) twinning 被引量:1
7
作者 Hyun Ji Kim Ye Jin Kim sung hyuk park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期671-683,共13页
The effects of pre-existing {10–12} extension twins on the precipitation behavior of an extruded AZ80 material during aging and on its mechanical properties after peak aging are investigated. The material containing ... The effects of pre-existing {10–12} extension twins on the precipitation behavior of an extruded AZ80 material during aging and on its mechanical properties after peak aging are investigated. The material containing {10–12} twins-which are formed by compression before aging(twinned material)-has a finer grain size and higher dislocation density than the extruded material. Although the peak hardnesses of the twinned and extruded materials are almost the same, the time to reach the peak hardness is considerably shorter in the former material than in the latter(4 h and 24 h, respectively). In the twinned material, the high dislocation density of the {10–12} twins promotes continuous precipitation, which results in the formation of numerous fine Mg17Al12precipitates within the twins in the early stage of aging.The formation of these continuous precipitates reduces the driving force for discontinuous precipitation, which consequently suppresses the formation and growth of coarse Mg17Al12precipitates at the grain boundaries. Despite its shorter peak-aging time, the 4 h-peak-aged twinned material shows higher tensile strength and elongation than the 24 h-peak-aged extruded material. These higher mechanical properties of the former material are attributed primarily to the presence of more abundant fine continuous precipitates, which are effective in strengthening the material, and less abundant coarse discontinuous precipitates, which can act as crack initiation sites. These results demonstrate that the introduction of {10–12} twins into wrought Mg–Al-based alloys can accelerate the Mg17Al12precipitation kinetics considerably and improve the strength and ductility of the peak-aged alloys simultaneously. 展开更多
关键词 AZ80 alloy TWIN AGING PRECIPITATION Tensile properties
下载PDF
Variations in dynamic recrystallization behavior and mechanical properties of AZ31 alloy with extrusion temperature 被引量:1
8
作者 Jae Won Cha sung hyuk park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2351-2365,共15页
This study investigates the effects of extrusion temperature on the dynamic recrystallization(DRX)behavior of a Mg-3Al-1Zn-0.3Mn(AZ31,wt%)alloy during hot extrusion and on the microstructural characteristics and mecha... This study investigates the effects of extrusion temperature on the dynamic recrystallization(DRX)behavior of a Mg-3Al-1Zn-0.3Mn(AZ31,wt%)alloy during hot extrusion and on the microstructural characteristics and mechanical properties of materials extruded at 350 and 450℃.An increase in the extrusion temperature causes a decrease in the amount of strain energy accumulated in the material during extrusion,because of promoted activation of pyramidal<c+a>slip and dynamic recovery.This reduced strain energy weakens the DRX behavior during extrusion,which eventually results in a decrease in the area fraction of recrystallized grains of the extruded material.The material extruded at 450℃has coarser grains and a stronger basal fiber texture than that extruded at 350℃.As the extrusion temperature increases from 350 to 450℃,the tensile yield strength(TYS)of the extruded material increases from 191.8 to 201.5 MPa,whereas its compressive yield strength(CYS)decreases from 122.5 to 111.0 MPa;consequently,its tension-compression yield stress ratio(CYS/TYS)decreases from 0.64 to 0.55.The increase in the TYS is attributed mainly to the stronger texture hardening and strain hardening effects of the extruded material,and the decrease in the CYS is attributed to the reduced twinning stress resulting from grain coarsening and texture intensification.The microstructural and textural evolutions of the materials during extrusion and the deformation and hardening mechanisms of the extruded materials are discussed in detail. 展开更多
关键词 Mg-Al-Zn alloy EXTRUSION Dynamic recrystallization Microstructure Yield asymmetry
下载PDF
Comparative study of extrudability, microstructure, and mechanical properties of AZ80 and BA53 alloys 被引量:1
9
作者 Sang-Cheol Jin Jae Won Cha +2 位作者 Jongbin Go Jun Ho Bae sung hyuk park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期249-258,共10页
The extrudability,microstructural characteristics,and tensile properties of the Mg–5Bi–3Al(BA53)alloy are investigated herein by comparing them with those of a commercial Mg–8Al–0.5 Zn(AZ80)alloy.When AZ80 is extr... The extrudability,microstructural characteristics,and tensile properties of the Mg–5Bi–3Al(BA53)alloy are investigated herein by comparing them with those of a commercial Mg–8Al–0.5 Zn(AZ80)alloy.When AZ80 is extruded at 400℃,severe hot cracking occurs at exit speeds of 4.5 m/min or more.In contrast,BA53 is successfully extruded without any surface cracking at 400℃ and at high exit speeds of 21–40 m/min.When extruded at 3 m/min(AZ80–3)and 40 m/min(BA53–40),both AZ80 and BA53 exhibited completely recrystallized microstructures with a<10–10>basal texture.However,BA53–40 has a coarser grain structure owing to grain growth promoted by the high temperature in the deformation zone.AZ80–3 contains a continuous network of Mg_(17)Al_(12) particles along the grain boundaries,which form via static precipitation during natural air-cooling after the material exits the extrusion die.BA53–40 contains coarse Mg_(3)Bi_(2) particles aligned parallel to the extrusion direction along with numerous uniformly distributed fine Mg_(3)Bi_(2) particles.AZ80–3 has higher tensile strength than BA53–40 because the relatively finer grains and larger number of solute atoms in AZ80–3 result in stronger grain-boundary and solid-solution hardening effects,respectively.Although BA53 is extruded at a high temperature and extrusion speed of 400℃ and 40 m/min,respectively,the extruded material has a high tensile yield strength of 188 MPa.This can be primarily attributed to the large particle hardening effect resulting from the numerous fine Mg_(3)Bi_(2) particles. 展开更多
关键词 Mg-Bi-Al alloy EXTRUSION Hot cracking Second phase Tensile properties
下载PDF
Underlying mechanisms of variation in yield asymmetry and strain hardening behavior of extruded pure Mg with Gd addition 被引量:1
10
作者 Gyo Myeong Lee sung hyuk park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期2165-2181,共17页
Effects of Gd addition on the strain hardening behavior and yield asymmetry of pure Mg are investigated by subjecting extruded pure Mg,Mg–5Gd,and Mg–15Gd(all in wt%)to tension and compression tests along the extrusi... Effects of Gd addition on the strain hardening behavior and yield asymmetry of pure Mg are investigated by subjecting extruded pure Mg,Mg–5Gd,and Mg–15Gd(all in wt%)to tension and compression tests along the extrusion direction(ED).As the amount of Gd added to pure Mg increases,the basal texture tilts toward the ED and the distribution of c-axes of grains becomes randomized.Under tension,the strain hardening rates of all the materials decrease until fracture.However,under compression,the strain hardening rate increases in the early stage of deformation in pure Mg and Mg–5Gd,whereas it continuously decreases in Mg–15Gd.Pure Mg exhibits considerably high tension-compression yield asymmetry,with a compressive yield strength(CYS)to tensile yield strength(TYS)ratio of 0.4.In contrast,Mg–5Gd exhibits excellent yield symmetry with CYS/TYS of 0.9 and Mg–15Gd exhibits reversed yield asymmetry with CYS/TYS of 1.2.Underlying mechanisms of these drastically different Gd-addition-induced deformation behaviors of the materials are discussed in terms of the crystallographic distribution of grains and the relative activation stresses of basal slip,prismatic slip,pyramidal slip,and{10–12}twinning under tension and compression. 展开更多
关键词 Pure Mg Gd addition TEXTURE Yield asymmetry Activation stress
下载PDF
Recent research progress on magnesium alloys in Korea:A review
11
作者 sung hyuk park Ye Jin Kim +4 位作者 Hyun Ji Kim Sang-Cheol Jin Jong Un Lee Alexander Komissarov Kwang Seon Shin 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3545-3584,共40页
This review highlights the recent advancements in Mg research in South Korea with a prime focus on high-speed-extrudable Mg–Bi-based alloys for high productivity and strength,innovative techniques utilizing{10–12}tw... This review highlights the recent advancements in Mg research in South Korea with a prime focus on high-speed-extrudable Mg–Bi-based alloys for high productivity and strength,innovative techniques utilizing{10–12}twinning for improved mechanical properties,and alloying and processing methods for enhanced corrosion resistance.High-alloyed Mg–Bi-based alloys possess thermally stableα-Mg matrix and secondary phase,which ensures high-speed extrusion of these alloys at elevated temperatures without hot cracking.Consequently,they exhibit outstanding extrudability with a maximum extrusion speed of up to 70 m/min.Furthermore,their high alloying contents offer excellent strength even after high-speed extrusion through strong solid solution hardening and particle hardening effects,making them suitable for high-performance extruded Mg products.The pre-twinning process utilizing{10–12}twinning and the combined process of pre-twinning and subsequent annealing have shown promise in controlling microstructure and texture of wrought Mg alloys and thus enhancing their mechanical properties.The pre-twinning process enhances tensile strength,fatigue properties,and age-hardening rate of Mg alloys.Furthermore,the combined processes of pre-twinning and subsequent annealing considerably improve their ductility,stretch formability,bending formability,and damping capacity.Efforts have been made to improve the corrosion resistance of Mg alloys through alloying additions,process treatments,and surface coatings.Alloying elements like Ca,Sc,and Sm alter the microstructural features(such as secondary phases and grain size)that affect the corrosion phenomenon.Process treatments such as multidirectional forging,screw rolling,and pulse electron beam can also improve the corrosion resistance by refining the microstructure.Furthermore,advanced surface coating technologies can create durable and corrosion-resistant layers for effectively protecting the Mg alloys.All these research activities conducted in South Korea have considerably contributed to the widespread utilization of Mg alloys in diverse applications by overcoming the inherent limitations of Mg alloys such as low extrudability,formability,and corrosion resistance. 展开更多
关键词 South Korea Mg–Bi alloys {10–12}twinning Corrosion Mechanical properties
下载PDF
Development of 3D bicontinuous metal-intermetallic composites through subsequent alloying process after liquid metal dealloying
12
作者 Jee Eun Jang Jihye Seong +1 位作者 Soo-Hyun Joo sung hyuk park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4274-4281,共8页
This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initi... This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initially, porous Ti structures are produced using the LMD process, followed by immersion in a molten Mg-3Al(wt%) metal. Due to the higher thermodynamic miscibility of Al with Ti compared to Mg, the concentration of Al in the Ti matrix increases as the immersion time increases. This results in a sequential phase transition within the Ti matrix: α-Ti → Ti_(3)Al → Ti Al. The phase transition considerably affects the hardness and strength of the composite material,with the Mg-Ti_(3)Al-Ti Al composite exhibiting a maximum hardness nearly twice as high as that of the conventional Mg-Ti composite. This innovative process holds potential for the development of various bicontinuous metal-intermetallic composites. 展开更多
关键词 Liquid metal dealloying Subsequent alloying Metal–intermetallic composite 3D bicontinuous structure HARDNESS
下载PDF
Improved continuous precipitation kinetics and tensile properties of extruded AZ80 alloy through {10-12} twin formation
13
作者 Hyun Ji Kim Sumi Jo sung hyuk park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期3323-3337,共15页
This study investigates the effect of{10-12}deformation twins on the continuous precipitation behavior of an extruded Mg-8.0Al-0.5Zn-0.2Mn(AZ80)alloy during aging.The extruded AZ80 alloy is compressed along the transv... This study investigates the effect of{10-12}deformation twins on the continuous precipitation behavior of an extruded Mg-8.0Al-0.5Zn-0.2Mn(AZ80)alloy during aging.The extruded AZ80 alloy is compressed along the transverse direction to introduce{10-12}twins,followed by an aging treatment at 300℃.The extruded material exhibits a twin-free microstructure with low internal strain energy,whereas the pre-twinned material possesses abundant{10-12}twins and has high internal strain energy.The aging results reveal that the peak-aging time of the pre-twinned material(1 h)is one-eighth of that of the extruded material(8 h).Although Mg_(17)Al_(12)continuous precipitates(CPs)are observed in both the peak-aged materials,these CPs are much smaller and more densely distributed in the pre-twinned material despite the significantly shorter aging time.The CPs size in the peak-aged materials increases in the following order:twinned region in the pre-twinned material(0.47μm)<residual matrix region in the pre-twinned material(1.71μm)<matrix region in the extruded material(2.55μm).Moreover,the CPs number density in the twinned region of the pre-twinned material is approximately 11 times higher than that in the matrix region of the extruded material.The peak-aged pre-twinned material exhibits significantly higher tensile strength and ductility than the peak-aged extruded material.These results demonstrate that the formation of{10-12}twins in the extruded AZ80 alloy substantially accelerates the static precipitation of CPs during aging at 300℃and improves the tensile properties of the peak-aged material. 展开更多
关键词 AZ80 alloy {10-12}twin AGING Continuous precipitation Tensile properties
下载PDF
Effects of surface roughness on bending properties of rolled AZ31 alloy
14
作者 Gyo Myeong Lee Jong Un Lee sung hyuk park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1224-1235,共12页
This study investigated the effects of mechanical-polishing-induced surface roughness and the direction of polishing lines on the bending properties of a rolled AZ31 alloy.To this end,three-point bending tests were pe... This study investigated the effects of mechanical-polishing-induced surface roughness and the direction of polishing lines on the bending properties of a rolled AZ31 alloy.To this end,three-point bending tests were performed on one sample without polishing lines(SS sample)and two samples with polishing lines—one in which the polishing lines were parallel to the rolling direction(RS-RD sample)and the other in which they were parallel to the transverse direction(RS-TD sample).In all three samples,macrocracks were formed in the width direction on the outer surface,where tensile stress was predominantly generated in the longitudinal direction.However,the macrocracks formed in the SS sample were curved because of the merging of uniformly formed fine microcracks,whereas those formed in the RS-TD sample were linear owing to the formation of relatively coarse microcracks along the polishing lines.The bendability of the samples was in the order of SS>RS-RD>RS-TD,and their limiting bending depths were 4.8,4.6,and 4.4 mm,respectively.In the presence of mechanical-polishing-induced surface roughness,polishing lines perpendicular to the direction of the major stress(i.e.,tensile stress along the longitudinal direction)resulted in a greater degree of stress concentration on the outer surface of the bending specimen.This higher stress concentration promoted the formation of undesirable{10–11}contraction and{10–11}–{10–12}double twins—which typically act as crack initiation sites—and thereby facilitated crack generation and propagation.Consequently,the surface roughness caused premature fracture during bending deformation,which,in turn,caused deterioration of the bendability of the rolled Mg alloy. 展开更多
关键词 AZ31 alloy BENDING Surface roughness Stress concentration CRACK
下载PDF
Microstructural evolution of pre-twinned Mg alloy with annealing temperature and underlying boundary migration mechanism
15
作者 Ye Jin Kim Jong Un Lee +1 位作者 Gyo Myeong Lee sung hyuk park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2953-2966,共14页
This study investigates the variations in the microstructural characteristics of a pre-twinned Mg alloy with the temperature of the subsequent annealing treatment.To this end,a rolled AZ31 alloy is compressed to 3%pla... This study investigates the variations in the microstructural characteristics of a pre-twinned Mg alloy with the temperature of the subsequent annealing treatment.To this end,a rolled AZ31 alloy is compressed to 3%plastic strain along the rolling direction(RD)to activate{10-12}twinning and is subsequently annealed at 200,250,300,350,and 400℃.Numerous{10-12}twins are formed throughout the compressed material,leading to the formation of a RD-oriented texture.At an annealing temperature of 200℃,no microstructural variations occur during annealing.As the annealing temperature increases from 250 to 400℃,the residual strain energy and remaining twin boundaries of the annealed material decrease owing to the promoted static recovery and the increased area fraction of twin-free grown grains.Consequently,an increase in the annealing temperature results in a gradual microstructural transition from a fully twinned grain structure to a completely twin-free grain structure.The microstructural evolution during annealing is predominantly governed by the movement of high-angle grain boundaries via a strain-induced boundary migration mechanism,and a few twin boundaries migrate above 350℃because of their lower boundary energy.The boundary migration behavior and resultant microstructural evolution are discussed in detail based on the variations in boundary mobility and driving force for boundary migration with annealing temperature. 展开更多
关键词 Rolled Mg alloy {10-12}twin Grain growth Boundary migration Annealing
下载PDF
Tailoring strength-ductility balance of caliber-rolled AZ31 Mg alloy through subsequent annealing 被引量:13
16
作者 Taein Kong Byung Je Kwak +6 位作者 Jonghyun Kim Jeong Hun Lee sung hyuk park Ji Hoon Kim Young Hoon Moon Hyun Sik Yoon Taekyung Lee 《Journal of Magnesium and Alloys》 SCIE 2020年第1期163-171,共9页
Recently,multi-pass caliber rolling has been shown to be effective for Mg alloys.This study investigated the effect of subsequent annealing on the mechanical properties of a caliber-rolled AZ31 Mg alloy to modulate th... Recently,multi-pass caliber rolling has been shown to be effective for Mg alloys.This study investigated the effect of subsequent annealing on the mechanical properties of a caliber-rolled AZ31 Mg alloy to modulate the strength-ductility relationship.This annealing gave rise to different trends in mechanical properties depending on the temperature regime.Low-temperature annealing(T≤473 K)exhibited a typical trade-off relationship,where an increase in annealing temperature resulted in increased ductility but decreased strength and hardness.Such a heat treatment did not degrade the high strength-ductility balance of the caliber-rolled alloy,suggesting that the mechanical properties could be tailored for different potential applications.In contrast,high-temperature annealing(T>473 K)caused a simultaneous deterioration in strength,hardness,and ductility with increasing annealing temperature.These differences are discussed in terms of the varying microstructural features under the different investigated annealing regimes. 展开更多
关键词 AZ31 Mg alloy Caliber rolling ANNEALING Grain growth Mechanical improvement TWINNING
下载PDF
Improved tensile properties of AZ31 Mg alloy subjected to various caliber-rolling strains 被引量:8
17
作者 Jeong Hun Lee Byung Je Kwak +2 位作者 Taein Kong sung hyuk park Taekyung Lee 《Journal of Magnesium and Alloys》 SCIE 2019年第3期381-387,共7页
A multi-pass caliber rolling has attracted attentions as an alternative to severe plastic deformation processes.The present study enhanced strength and ductility of AZ31 Mg alloy simultaneously through the application... A multi-pass caliber rolling has attracted attentions as an alternative to severe plastic deformation processes.The present study enhanced strength and ductility of AZ31 Mg alloy simultaneously through the application of caliber rolling.The improving trends in tensile properties were interpreted with various caliber-rolling strains.The oval/circular-shaped calibers imposed a high plastic strain at the center of crosssection,leading to effective grain refinement to submicron scale.This work also confirmed the texture randomizing effect of caliber rolling.Such microstructural evolutions gave rise to the fabrication of high-strength material.Moreover,the caliber-rolled AZ31 Mg alloys exhibited an improvement in ductility as compared to the as-received sheet-rolled material.This was discussed in terms of activation of non-basal slip systems and suppression of mechanical twinning.This study successfully proved the possibility of caliber rolling to produce a bulk Mg rod with enhanced tensile properties. 展开更多
关键词 Magnesium AZ31 alloy Caliber rolling Grain refinement Texture randomization Mechanical improvement
下载PDF
Microstructural characteristics of AZ31 alloys rolled at room and cryogenic temperatures and their variation during annealing 被引量:6
18
作者 Sang Won Lee Sang-Hoon Kim sung hyuk park 《Journal of Magnesium and Alloys》 SCIE 2020年第2期537-545,共9页
This study investigates the microstructural characteristics of AZ31 Mg alloys rolled at room temperature(RT)and cryogenic temperature(CT)and the variation in their microstructure and hardness during subsequent anneali... This study investigates the microstructural characteristics of AZ31 Mg alloys rolled at room temperature(RT)and cryogenic temperature(CT)and the variation in their microstructure and hardness during subsequent annealing.Cryorolling induces the formation of more side cracks than does RT rolling,because of the reduction in the ability of the material to accommodate deformation at CT.Numerous{10-11}contraction and{10-11}-{10-12}double twins are formed in both the material rolled at RT and that rolled at CT,because the grains of the initial material are favorably oriented for{10-11}twinning under rolling.The RT-rolled material has a higher dislocation density than the cryorolled material,and more twins are uniformly distributed throughout the former material.As a result,static recrystallization during subsequent annealing is more pronounced in the RT-rolled material,which results in the formation of a highly recrystallized homogeneous microstructure after annealing.In contrast,the formed twins are predominantly present along the shear bands in the cryorolled material,as a result of which this material has an inhomogeneous bi modal structure containing a large amount of coarse unrecrystallized grains after annealing.The hardness of the annealed RT-rolled material is higher than that of the annealed cryorolled material owing to the finer grain structure of the former. 展开更多
关键词 MAGNESIUM ROLLING Cryogenic temperature ANNEALING Microstructure
下载PDF
Texture tailoring and bendability improvement of rolled AZ31 alloy using {10-12} twinning: The effect of precompression levels 被引量:6
19
作者 Jong Un Lee Ye Jin Kim +6 位作者 Sang-Hoon Kim Jeong Hun Lee Min-Seong Kim Shi-Hoon Choi Byoung Gi Moon Young Min Kim sung hyuk park 《Journal of Magnesium and Alloys》 SCIE 2019年第4期648-660,共13页
In this study,the texture of a rolled Mg alloy is effectively modified through the application of precompression and subsequent annealing treatment,leading to a remarkable improvement in the bending formability of the... In this study,the texture of a rolled Mg alloy is effectively modified through the application of precompression and subsequent annealing treatment,leading to a remarkable improvement in the bending formability of the alloy at room temperature.Precompression induces lattice reorientation through{10-12}twinning,and annealing treatment reduces the stored strain energy of the precompressed material,which results in the formation of a stable grain structure with two dominant texture components.With an increase in precompression,the tensile strain in the outer region of the bending samples is accommodated to a greater extent due to more pronounced{10-12}twinning and basal slip.As a result,the bending formability of the material at room temperature improves with greater precompression.The variation in microstructure,texture,and bending behavior in relation to the degree of precompression is discussed in detail. 展开更多
关键词 Magnesium Bending FORMABILITY TWINNING TEXTURE
下载PDF
Improvement in tensile strength of extruded Mg-5Bi alloy through addition of Sn and its underlying strengthening mechanisms 被引量:4
20
作者 Sang-Cheol Jin Jae Won Cha +3 位作者 Jeong Hun Lee Taekyung Lee Sang-Ho Han sung hyuk park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第11期3100-3112,共13页
Through an investigation of the microstructure and mechanical properties of extruded Mg–5Bi–x Sn(BT5x, x = 0, 2, 4, and 6 wt%) alloys,this study demonstrates that the addition of Sn to an Mg–5Bi binary alloy signif... Through an investigation of the microstructure and mechanical properties of extruded Mg–5Bi–x Sn(BT5x, x = 0, 2, 4, and 6 wt%) alloys,this study demonstrates that the addition of Sn to an Mg–5Bi binary alloy significantly improves the tensile strength of the extruded alloy.All the extruded alloys exhibit a typical basal fiber texture and a partially dynamically recrystallized(DRXed) microstructure consisting of fine DRXed grains and coarse un DRXed grains. As the Sn content increases from 0 wt% to 6 wt%, the average size of the DRXed grains decreases from 4.2 to 2.8 μm owing to the increase in the amount of precipitates via their grain-boundary pinning effect. The extruded B5 and BT52 alloys contain numerous Mg_(3)Bi_(2) precipitates, but their size and number density are smaller and higher, respectively, in the latter alloy.Numerous Mg_(2)Sn precipitates as well as Mg_(3)Bi_(2)precipitates are present in the extruded BT54 and BT56 alloys, and the number density of the Mg_(2)Sn precipitates is higher in the latter alloy because of its higher Sn content. The addition of 2 wt% Sn to the B5 alloy significantly improves the yield strength(YS) and ultimate tensile strength(UTS) of the extruded alloy—by 76 and 57 MPa, respectively. This drastic improvement is the combined outcome of enhanced grain-boundary hardening, precipitation hardening, and solid-solution hardening effects induced by the refined DRXed grains, numerous precipitates, and Sn solute atoms, respectively. The further addition of 2 wt% or 4 wt% Sn to the BT52 alloy leads to moderate increments in the YS and UTS of the extruded alloy. Specifically, each addition of 2 wt% Sn increases the YS and UTS by ~26 and ~20 MPa, respectively, which is attributed mainly to the additional precipitation hardening effect induced by the Mg_(2)Sn precipitates. 展开更多
关键词 Mg-Bi-Sn alloy EXTRUSION Precipitation Microstructure Tensile property
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部