Refractometric fiber optic sensors have a number of applications in industry due to advantages like remote sensing ability, compact size, easy to fit, etc. A refractometric sensor contains a pair of parallel fibers an...Refractometric fiber optic sensors have a number of applications in industry due to advantages like remote sensing ability, compact size, easy to fit, etc. A refractometric sensor contains a pair of parallel fibers and a gap between the sensor probe and reflector, wherein the liquid whose refractive index is to be measured is filled. This paper describes the importance of mathematical modeling of this sensor. Ray tracing approach is used to model the sensor mathematically. This mathematical model is generalized for any scenario which is useful to avoid tedious trial and error techniques to design the sensor prototype. Mathematical modelling is a useful tool to optimize the gap distance for a detection of refractive index of liquid. The model is developed and analyzed rigorously considering adulteration of diesel by kerosene where refractive index varies from 1.44 to 1.46. Simulation experiments are carried out to optimize the gap distance which is found to be 6.8 mm using both models. Experiments are carried out where sensor probe is fabricated and results are analyzed. It is observed that for suggested gap distance sensor output varies almost linear over the entire range.展开更多
Fiber optic displacement sensors are widely used in industry. Retro reflective fiber optic displacement sensor consists of parallel fibers with a reflector at a distance. Light is launched into the transmitting fiber ...Fiber optic displacement sensors are widely used in industry. Retro reflective fiber optic displacement sensor consists of parallel fibers with a reflector at a distance. Light is launched into the transmitting fiber which gets reflected by reflector. This reflected light is collected by the receiving fiber. The received light is function of the displacement of the reflector from the fiber end faces. This paper is targeted to obtain a robust design for the fiber optic displacement sensor (FODS) using well known Taguchi method. The design takes care of all noise parameters within constraints of manufacturing tolerances. The statistical data analysis is performed on the simulated results. The larger the better signal to noise quality characteristics is used to find the effect of control parameters in the data analysis. Taguchi analysis suggests dominant parameters, which affects the sensitivity of the FODS and causes immunity to noise. A source fiber inclination angle is chosen as an adjustment parameter. Other control parameters are used for fine tuning of the FODS design for achieving three qualities viz. best robustness, optimized sensitivity and robustness and best sensitivity.展开更多
Salinity is an important property of industrial and natural waters. It is defined as the measure of the mass of dissolved salts in a given mass of solution. High salinity has an impact on people and industries reliant...Salinity is an important property of industrial and natural waters. It is defined as the measure of the mass of dissolved salts in a given mass of solution. High salinity has an impact on people and industries reliant on water. High levels of salt can reduce crop yields, limit the choice of crops that can be grown and, at higher concentrations over long periods, can kill trees and make the land unsuitable for agricultural purposes. Salinity increases the “hardness” of water, which can mean more soap and detergents have to be used or water softeners installed and maintained. This can also cause scaling in pipes and heaters. The experimental determination of the salt content by drying and weighing presents some difficulties due to the loss of some components. The only reliable way to determine the true or absolute salinity of natural water is to make a complete chemical analysis. However, the method is time consuming and cannot yield the precision necessity for accurate work. Thus to determine salinity, one normally used method involves the measurement of a physical property such as conductivity, density or refractive index. The paper reports the refractometric fiber optic sensor for detection of salinity of water. The mathematical model is developed for detection of the refractive index of liquid and simulated in MATLAB. The fiber optic sensor probe is developed to measure the refractive index of the solution containing different amount of salt dissolved in water i.e. different molar concentrations. Experiments are carried out using the developed probe for these solutions. Experimental results are showing good agreement with the simulated results.展开更多
Aluminum metallization using the sprayed coating for exhaust mild steel (MS) pipes of tractors is a standard practice for avoiding rusting. Patches of thin metal coats are prone to rusting and are thus considered as...Aluminum metallization using the sprayed coating for exhaust mild steel (MS) pipes of tractors is a standard practice for avoiding rusting. Patches of thin metal coats are prone to rusting and are thus considered as defects in the surface coating. This paper reports a novel configuration of the fiber optic sensor for on-line checking the aluminum metaUization uniformity and hence for defect detection. An optimally chosen high bright 440 nm BLUE LED (light-emitting diode) launches light into a transmitting fiber inclined at the angle of 60° to the surface under inspection placed adequately. The reflected light is transported by a receiving fiber to a blue enhanced photo detector. The metallization thickness on the coated surface results in visually observable variation in the gray shades. The coated pipe is spirally inspected by a combination of linear and rotary motions. The sensor output is the signal conditioned and monitored with RISHUBH DAS. Experimental results show the good repeatability in the defect detection and coating non-uniformity measurement.展开更多
文摘Refractometric fiber optic sensors have a number of applications in industry due to advantages like remote sensing ability, compact size, easy to fit, etc. A refractometric sensor contains a pair of parallel fibers and a gap between the sensor probe and reflector, wherein the liquid whose refractive index is to be measured is filled. This paper describes the importance of mathematical modeling of this sensor. Ray tracing approach is used to model the sensor mathematically. This mathematical model is generalized for any scenario which is useful to avoid tedious trial and error techniques to design the sensor prototype. Mathematical modelling is a useful tool to optimize the gap distance for a detection of refractive index of liquid. The model is developed and analyzed rigorously considering adulteration of diesel by kerosene where refractive index varies from 1.44 to 1.46. Simulation experiments are carried out to optimize the gap distance which is found to be 6.8 mm using both models. Experiments are carried out where sensor probe is fabricated and results are analyzed. It is observed that for suggested gap distance sensor output varies almost linear over the entire range.
文摘Fiber optic displacement sensors are widely used in industry. Retro reflective fiber optic displacement sensor consists of parallel fibers with a reflector at a distance. Light is launched into the transmitting fiber which gets reflected by reflector. This reflected light is collected by the receiving fiber. The received light is function of the displacement of the reflector from the fiber end faces. This paper is targeted to obtain a robust design for the fiber optic displacement sensor (FODS) using well known Taguchi method. The design takes care of all noise parameters within constraints of manufacturing tolerances. The statistical data analysis is performed on the simulated results. The larger the better signal to noise quality characteristics is used to find the effect of control parameters in the data analysis. Taguchi analysis suggests dominant parameters, which affects the sensitivity of the FODS and causes immunity to noise. A source fiber inclination angle is chosen as an adjustment parameter. Other control parameters are used for fine tuning of the FODS design for achieving three qualities viz. best robustness, optimized sensitivity and robustness and best sensitivity.
文摘Salinity is an important property of industrial and natural waters. It is defined as the measure of the mass of dissolved salts in a given mass of solution. High salinity has an impact on people and industries reliant on water. High levels of salt can reduce crop yields, limit the choice of crops that can be grown and, at higher concentrations over long periods, can kill trees and make the land unsuitable for agricultural purposes. Salinity increases the “hardness” of water, which can mean more soap and detergents have to be used or water softeners installed and maintained. This can also cause scaling in pipes and heaters. The experimental determination of the salt content by drying and weighing presents some difficulties due to the loss of some components. The only reliable way to determine the true or absolute salinity of natural water is to make a complete chemical analysis. However, the method is time consuming and cannot yield the precision necessity for accurate work. Thus to determine salinity, one normally used method involves the measurement of a physical property such as conductivity, density or refractive index. The paper reports the refractometric fiber optic sensor for detection of salinity of water. The mathematical model is developed for detection of the refractive index of liquid and simulated in MATLAB. The fiber optic sensor probe is developed to measure the refractive index of the solution containing different amount of salt dissolved in water i.e. different molar concentrations. Experiments are carried out using the developed probe for these solutions. Experimental results are showing good agreement with the simulated results.
文摘Aluminum metallization using the sprayed coating for exhaust mild steel (MS) pipes of tractors is a standard practice for avoiding rusting. Patches of thin metal coats are prone to rusting and are thus considered as defects in the surface coating. This paper reports a novel configuration of the fiber optic sensor for on-line checking the aluminum metaUization uniformity and hence for defect detection. An optimally chosen high bright 440 nm BLUE LED (light-emitting diode) launches light into a transmitting fiber inclined at the angle of 60° to the surface under inspection placed adequately. The reflected light is transported by a receiving fiber to a blue enhanced photo detector. The metallization thickness on the coated surface results in visually observable variation in the gray shades. The coated pipe is spirally inspected by a combination of linear and rotary motions. The sensor output is the signal conditioned and monitored with RISHUBH DAS. Experimental results show the good repeatability in the defect detection and coating non-uniformity measurement.