In this study we are reporting annealing induced optical properties of bismuth ferrite (BiFeO3) thin films deposited on glass substrate via spin coating at 5000 rpm. The structural, optical and surface morphology of B...In this study we are reporting annealing induced optical properties of bismuth ferrite (BiFeO3) thin films deposited on glass substrate via spin coating at 5000 rpm. The structural, optical and surface morphology of BiFeO3 (BFO) thin films have been studied via X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Optical absorption (UV-Vis) and Photoluminescence (PL) spectroscopy. XRD spectra confirm annealing induced phase formation of BiFeO3 possessing a rhombohedral R3c structure. The films are dense and without cracks, although the presence of porosity in BFO/glass was observed. Moreover, optical absorption spectra indicate annealing induced effect on the energy band structure in comparison to pristine BiFeO3. It is observed that annealing effect shows an intense shift in the UV-Vis spectra as diffuse absorption together with the variation in the optical band gap. The evaluated optical band gap values are approximately equal to the bulk band gap value of BiFeO3.展开更多
In this manuscript a comparative study on Bi<sub>2</sub>O<sub>3</sub>/polystyrene and Bi<sub>2</sub>O<sub>3</sub>/PVDF composites has been executed via analysis of struc...In this manuscript a comparative study on Bi<sub>2</sub>O<sub>3</sub>/polystyrene and Bi<sub>2</sub>O<sub>3</sub>/PVDF composites has been executed via analysis of structural, bonding, surface morphology and dielectric response of composites for energy storage. The composites have been synthesized using solution cast method by varying concentrations of Bi<sub>2</sub>O<sub>3</sub> (BO = 1 - 5 mw%) into polystyrene (PS) and polyvinylidene fluoride (PVDF) polymers respectively. X-ray diffraction confirms the generation of crystallinity, Fourier transform infrared (FT-IR) spectroscopy confirms bonding behavior and scanning electron microscopy (SEM) confirms uniform distribution of Bi<sub>2</sub>O<sub>3</sub> (BO) in PS and PVDF polymers. Impedance spectroscopy has been employed for determination of dielectric response of the fabricated composites. The dielectric constant has been found to be increased as 1.4 times of pristine PS to BO<sub>5%</sub>PS<sub>95%</sub> composites and 1.8 times of pristine PVDF to BO<sub>5%</sub>PVDF<sub>95%</sub> composites respectively. These high dielectric composite electrodes are useful for flexible energy storage devices.展开更多
文摘In this study we are reporting annealing induced optical properties of bismuth ferrite (BiFeO3) thin films deposited on glass substrate via spin coating at 5000 rpm. The structural, optical and surface morphology of BiFeO3 (BFO) thin films have been studied via X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Optical absorption (UV-Vis) and Photoluminescence (PL) spectroscopy. XRD spectra confirm annealing induced phase formation of BiFeO3 possessing a rhombohedral R3c structure. The films are dense and without cracks, although the presence of porosity in BFO/glass was observed. Moreover, optical absorption spectra indicate annealing induced effect on the energy band structure in comparison to pristine BiFeO3. It is observed that annealing effect shows an intense shift in the UV-Vis spectra as diffuse absorption together with the variation in the optical band gap. The evaluated optical band gap values are approximately equal to the bulk band gap value of BiFeO3.
文摘In this manuscript a comparative study on Bi<sub>2</sub>O<sub>3</sub>/polystyrene and Bi<sub>2</sub>O<sub>3</sub>/PVDF composites has been executed via analysis of structural, bonding, surface morphology and dielectric response of composites for energy storage. The composites have been synthesized using solution cast method by varying concentrations of Bi<sub>2</sub>O<sub>3</sub> (BO = 1 - 5 mw%) into polystyrene (PS) and polyvinylidene fluoride (PVDF) polymers respectively. X-ray diffraction confirms the generation of crystallinity, Fourier transform infrared (FT-IR) spectroscopy confirms bonding behavior and scanning electron microscopy (SEM) confirms uniform distribution of Bi<sub>2</sub>O<sub>3</sub> (BO) in PS and PVDF polymers. Impedance spectroscopy has been employed for determination of dielectric response of the fabricated composites. The dielectric constant has been found to be increased as 1.4 times of pristine PS to BO<sub>5%</sub>PS<sub>95%</sub> composites and 1.8 times of pristine PVDF to BO<sub>5%</sub>PVDF<sub>95%</sub> composites respectively. These high dielectric composite electrodes are useful for flexible energy storage devices.