Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression mode...Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression models,extreme gradient boosting(XGBoost),artificial neural network(ANN),support vector regression(SVR),and Gaussian process regression(GP),on two common terminal ballistics’ problems:(a)predicting the V50ballistic limit of monolithic metallic armour impacted by small and medium calibre projectiles and fragments,and(b) predicting the depth to which a projectile will penetrate a target of semi-infinite thickness.To achieve this we utilise two datasets,each consisting of approximately 1000samples,collated from public release sources.We demonstrate that all four model types provide similarly excellent agreement when interpolating within the training data and diverge when extrapolating outside this range.Although extrapolation is not advisable for ML-based regression models,for applications such as lethality/survivability analysis,such capability is required.To circumvent this,we implement expert knowledge and physics-based models via enforced monotonicity,as a Gaussian prior mean,and through a modified loss function.The physics-informed models demonstrate improved performance over both classical physics-based models and the basic ML regression models,providing an ability to accurately fit experimental data when it is available and then revert to the physics-based model when not.The resulting models demonstrate high levels of predictive accuracy over a very wide range of projectile types,target materials and thicknesses,and impact conditions significantly more diverse than that achievable from any existing analytical approach.Compared with numerical analysis tools such as finite element solvers the ML models run orders of magnitude faster.We provide some general guidelines throughout for the development,application,and reporting of ML models in terminal ballistics problems.展开更多
We evaluate an adaptive optimisation methodology,Bayesian optimisation(BO),for designing a minimum weight explosive reactive armour(ERA)for protection against a surrogate medium calibre kinetic energy(KE)long rod proj...We evaluate an adaptive optimisation methodology,Bayesian optimisation(BO),for designing a minimum weight explosive reactive armour(ERA)for protection against a surrogate medium calibre kinetic energy(KE)long rod projectile and surrogate shaped charge(SC)warhead.We perform the optimisation using a conventional BO methodology and compare it with a conventional trial-and-error approach from a human expert.A third approach,utilising a novel human-machine teaming framework for BO is also evaluated.Data for the optimisation is generated using numerical simulations that are demonstrated to provide reasonable qualitative agreement with reference experiments.The human-machine teaming methodology is shown to identify the optimum ERA design in the fewest number of evaluations,outperforming both the stand-alone human and stand-alone BO methodologies.From a design space of almost 1800 configurations the human-machine teaming approach identifies the minimum weight ERA design in 10 samples.展开更多
We present an inverse methodology for deriving viscoplasticity constitutive model parameters for use in explicit finite element simulations of dynamic processes using functional experiments, i.e., those which provide ...We present an inverse methodology for deriving viscoplasticity constitutive model parameters for use in explicit finite element simulations of dynamic processes using functional experiments, i.e., those which provide value beyond that of constitutive model development. The developed methodology utilises Bayesian optimisation to minimise the error between experimental measurements and numerical simulations performed in LS-DYNA. We demonstrate the optimisation methodology using high hardness armour steels across three types of experiments that induce a wide range of loading conditions: ballistic penetration, rod-on-anvil, and near-field blast deformation. By utilising such a broad range of conditions for the optimisation, the resulting constitutive model parameters are generalised, i.e., applicable across the range of loading conditions encompassed the by those experiments(e.g., stress states, plastic strain magnitudes, strain rates, etc.). Model constants identified using this methodology are demonstrated to provide a generalisable model with superior predictive accuracy than those derived from conventional mechanical characterisation experiments or optimised from a single experimental condition.展开更多
The identification of the ground state phases of a chemical space in the convex hull analysis is a key determinant of the synthesizability of materials.Online material databases have been instrumental in exploring one...The identification of the ground state phases of a chemical space in the convex hull analysis is a key determinant of the synthesizability of materials.Online material databases have been instrumental in exploring one aspect of the synthesizability of many materials,namely thermodynamic stability.However,the vibrational stability,which is another aspect of synthesizability,of new materials is not known.Applying first principles approaches to calculate the vibrational spectra of materials in online material databases is computationally intractable.Here,a dataset of vibrational stability for~3100 materials is used to train a machine learning classifier that can accurately distinguish between vibrationally stable and unstable materials.This classifier has the potential to be further developed as an essential filtering tool for online material databases that can inform the material science community of the vibrational stability or instability of the materials queried in convex hulls.展开更多
文摘Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression models,extreme gradient boosting(XGBoost),artificial neural network(ANN),support vector regression(SVR),and Gaussian process regression(GP),on two common terminal ballistics’ problems:(a)predicting the V50ballistic limit of monolithic metallic armour impacted by small and medium calibre projectiles and fragments,and(b) predicting the depth to which a projectile will penetrate a target of semi-infinite thickness.To achieve this we utilise two datasets,each consisting of approximately 1000samples,collated from public release sources.We demonstrate that all four model types provide similarly excellent agreement when interpolating within the training data and diverge when extrapolating outside this range.Although extrapolation is not advisable for ML-based regression models,for applications such as lethality/survivability analysis,such capability is required.To circumvent this,we implement expert knowledge and physics-based models via enforced monotonicity,as a Gaussian prior mean,and through a modified loss function.The physics-informed models demonstrate improved performance over both classical physics-based models and the basic ML regression models,providing an ability to accurately fit experimental data when it is available and then revert to the physics-based model when not.The resulting models demonstrate high levels of predictive accuracy over a very wide range of projectile types,target materials and thicknesses,and impact conditions significantly more diverse than that achievable from any existing analytical approach.Compared with numerical analysis tools such as finite element solvers the ML models run orders of magnitude faster.We provide some general guidelines throughout for the development,application,and reporting of ML models in terminal ballistics problems.
文摘We evaluate an adaptive optimisation methodology,Bayesian optimisation(BO),for designing a minimum weight explosive reactive armour(ERA)for protection against a surrogate medium calibre kinetic energy(KE)long rod projectile and surrogate shaped charge(SC)warhead.We perform the optimisation using a conventional BO methodology and compare it with a conventional trial-and-error approach from a human expert.A third approach,utilising a novel human-machine teaming framework for BO is also evaluated.Data for the optimisation is generated using numerical simulations that are demonstrated to provide reasonable qualitative agreement with reference experiments.The human-machine teaming methodology is shown to identify the optimum ERA design in the fewest number of evaluations,outperforming both the stand-alone human and stand-alone BO methodologies.From a design space of almost 1800 configurations the human-machine teaming approach identifies the minimum weight ERA design in 10 samples.
文摘We present an inverse methodology for deriving viscoplasticity constitutive model parameters for use in explicit finite element simulations of dynamic processes using functional experiments, i.e., those which provide value beyond that of constitutive model development. The developed methodology utilises Bayesian optimisation to minimise the error between experimental measurements and numerical simulations performed in LS-DYNA. We demonstrate the optimisation methodology using high hardness armour steels across three types of experiments that induce a wide range of loading conditions: ballistic penetration, rod-on-anvil, and near-field blast deformation. By utilising such a broad range of conditions for the optimisation, the resulting constitutive model parameters are generalised, i.e., applicable across the range of loading conditions encompassed the by those experiments(e.g., stress states, plastic strain magnitudes, strain rates, etc.). Model constants identified using this methodology are demonstrated to provide a generalisable model with superior predictive accuracy than those derived from conventional mechanical characterisation experiments or optimised from a single experimental condition.
基金This work was supported by the Australian Government through the Australian Research Council(ARC)under the Centre of Excellence scheme(project number CE170100026)This work was supported by computational resources provided by the Australian Government through the National Computa-tional Infrastructure(NCI)National Facility and the Pawsey Supercomputer Centre,under the NCMAS scheme.This research used resources of the National Energy Research Scientific Computing Center(NERSC)a U.S.Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory,operated under Contract No.DE-AC02-05CH11231.
文摘The identification of the ground state phases of a chemical space in the convex hull analysis is a key determinant of the synthesizability of materials.Online material databases have been instrumental in exploring one aspect of the synthesizability of many materials,namely thermodynamic stability.However,the vibrational stability,which is another aspect of synthesizability,of new materials is not known.Applying first principles approaches to calculate the vibrational spectra of materials in online material databases is computationally intractable.Here,a dataset of vibrational stability for~3100 materials is used to train a machine learning classifier that can accurately distinguish between vibrationally stable and unstable materials.This classifier has the potential to be further developed as an essential filtering tool for online material databases that can inform the material science community of the vibrational stability or instability of the materials queried in convex hulls.