In South-Eastern forests of France,risks linked to the effects of tropospheric ozone(O_(3))are real;its annual impact has been observed specifically near the coastline and in high altitude mountains during the period ...In South-Eastern forests of France,risks linked to the effects of tropospheric ozone(O_(3))are real;its annual impact has been observed specifically near the coastline and in high altitude mountains during the period 2017-2019.In this study,the risk assessment of O_(3)pollutant was carried out using two approaches based on forest response indicators such as O_(3)specific foliar visible injury and by stomatal O_(3)flux.Phytotoxic O_(3)dose values(POD_(0))were obtained by the DO_(3)SE model.The model requires hourly O_(3)concentration for POD_(0)calculation.A modified approach that uses measurements from passive samplers(monthly average O_(3)concentration)was tested for the calculation of POD_(0)and test results showed good agreement with the POD_(0)calculated using hourly O_(3)data.In the model input file,the average O_(3)concentration is used for POD_(0),and this could be useful for POD_(0)calculation when the active monitor is limited.In this study,a flux-based assessment provided better correlation with O_(3)specific leaf injury,which is also species-specific.Foliar visible injury in response to O_(3)indicates that Pinus cembra and Pinus halepensis are more affected and therefore more sensitive than Pinus sylvestris.The POD_(0)and stomatal conductance(Gsto)seem to be induced by environmental factors,primarily rainfall and the soil water potential(fSWP).The correlation between the O_(3)flux metric and environmental variables with forest response indicators by Spearman rank test confirms P.cembra as one of the most sensitive species to O_(3).展开更多
基金funded by the Alcotra program MITIMPACT(Grand No.1671/1450109240)the Scientific Grant Agency of the Slovak Republic,VEGA(Project No.2/0093/2)。
文摘In South-Eastern forests of France,risks linked to the effects of tropospheric ozone(O_(3))are real;its annual impact has been observed specifically near the coastline and in high altitude mountains during the period 2017-2019.In this study,the risk assessment of O_(3)pollutant was carried out using two approaches based on forest response indicators such as O_(3)specific foliar visible injury and by stomatal O_(3)flux.Phytotoxic O_(3)dose values(POD_(0))were obtained by the DO_(3)SE model.The model requires hourly O_(3)concentration for POD_(0)calculation.A modified approach that uses measurements from passive samplers(monthly average O_(3)concentration)was tested for the calculation of POD_(0)and test results showed good agreement with the POD_(0)calculated using hourly O_(3)data.In the model input file,the average O_(3)concentration is used for POD_(0),and this could be useful for POD_(0)calculation when the active monitor is limited.In this study,a flux-based assessment provided better correlation with O_(3)specific leaf injury,which is also species-specific.Foliar visible injury in response to O_(3)indicates that Pinus cembra and Pinus halepensis are more affected and therefore more sensitive than Pinus sylvestris.The POD_(0)and stomatal conductance(Gsto)seem to be induced by environmental factors,primarily rainfall and the soil water potential(fSWP).The correlation between the O_(3)flux metric and environmental variables with forest response indicators by Spearman rank test confirms P.cembra as one of the most sensitive species to O_(3).