Liver hepatocellular cancer(LIHC)is positioned as the third cancer with the highest mortalities worldwide,and high mortalities are associated with late diagnosis and recurrence.This study advances bioinformatics analy...Liver hepatocellular cancer(LIHC)is positioned as the third cancer with the highest mortalities worldwide,and high mortalities are associated with late diagnosis and recurrence.This study advances bioinformatics analysis of FAM3A expression in LIHC to evaluate its potential as a prognostic,diagnostic and therapeutic biomarker.Bioinformatics tools such as UALCAN,GEPIA2,KM plotter,TIMER2 and cBioPortal are employed to conduct analysis.Initially,the expression analysis revealed up-regulation of FAM3A in LIHC based on various variables.Further,the study observed that FAM3A methylation regulates expression as variation in methylation level of FAM3A was assessed in LIHC.Moreover,this over-expression of FAM3A results in poor overall survival(OS)in LIHC patients.All of these proposed that FAM3A has a role in the progression and development of LIHC.While examined association of FAM3A expression and infiltration level of CD8+T cells in LIHC patients using TIMER2 revealed that FAM3A has a positive correlation with purity in LIHC that highlights the molecular landscape.Analysis of genetic alteration revealed minute role of FAM3A in LIHC still provides valuable insight.Overall,our findings reveal that FAM3A has potential as diagnostic,therapeutic and prognostic biomarkers in LIHC.展开更多
The study investigates the expression pattern and regulatory mechanisms of estrogen receptor 1 (ESR1) in liver hepatocellular carcinoma (LIHC) through comprehensive bioinformatics analysis. Utilizing UALCAN and GEPIA2...The study investigates the expression pattern and regulatory mechanisms of estrogen receptor 1 (ESR1) in liver hepatocellular carcinoma (LIHC) through comprehensive bioinformatics analysis. Utilizing UALCAN and GEPIA2 databases, significant down-regulation of ESR1 expression is observed in LIHC samples compared to normal controls, indicating its potential role in tumor progression. Further analysis reveals consistent down-regulation across different clinical variables including patient age, gender, race, and various stages of LIHC, affirming the regulatory role of ESR1 in tumor development and progression. Additionally, promoter methylation analysis demonstrates hypermethylation of ESR1 in LIHC samples, negatively correlating with its expression. This association persists across different clinical parameters, emphasizing the inverse relationship between ESR1 methylation and expression levels. Survival analysis indicates that up- regulation of ESR1 is associated with better overall survival, suggesting its potential as a prognostic biomarker in LIHC. Furthermore, genetic mutation analysis using cBioPortal reveals a spectrum of alterations in ESR1, including amplification, missense mutation, deep deletion, splice mutation, and truncating mutation, highlighting the genetic complexity of ESR1 in LIHC. These findings collectively contribute to a deeper understanding of ESR1 dysregulation in LIHC and its clinical implications as a potential therapeutic target and prognostic marker.展开更多
文摘Liver hepatocellular cancer(LIHC)is positioned as the third cancer with the highest mortalities worldwide,and high mortalities are associated with late diagnosis and recurrence.This study advances bioinformatics analysis of FAM3A expression in LIHC to evaluate its potential as a prognostic,diagnostic and therapeutic biomarker.Bioinformatics tools such as UALCAN,GEPIA2,KM plotter,TIMER2 and cBioPortal are employed to conduct analysis.Initially,the expression analysis revealed up-regulation of FAM3A in LIHC based on various variables.Further,the study observed that FAM3A methylation regulates expression as variation in methylation level of FAM3A was assessed in LIHC.Moreover,this over-expression of FAM3A results in poor overall survival(OS)in LIHC patients.All of these proposed that FAM3A has a role in the progression and development of LIHC.While examined association of FAM3A expression and infiltration level of CD8+T cells in LIHC patients using TIMER2 revealed that FAM3A has a positive correlation with purity in LIHC that highlights the molecular landscape.Analysis of genetic alteration revealed minute role of FAM3A in LIHC still provides valuable insight.Overall,our findings reveal that FAM3A has potential as diagnostic,therapeutic and prognostic biomarkers in LIHC.
文摘The study investigates the expression pattern and regulatory mechanisms of estrogen receptor 1 (ESR1) in liver hepatocellular carcinoma (LIHC) through comprehensive bioinformatics analysis. Utilizing UALCAN and GEPIA2 databases, significant down-regulation of ESR1 expression is observed in LIHC samples compared to normal controls, indicating its potential role in tumor progression. Further analysis reveals consistent down-regulation across different clinical variables including patient age, gender, race, and various stages of LIHC, affirming the regulatory role of ESR1 in tumor development and progression. Additionally, promoter methylation analysis demonstrates hypermethylation of ESR1 in LIHC samples, negatively correlating with its expression. This association persists across different clinical parameters, emphasizing the inverse relationship between ESR1 methylation and expression levels. Survival analysis indicates that up- regulation of ESR1 is associated with better overall survival, suggesting its potential as a prognostic biomarker in LIHC. Furthermore, genetic mutation analysis using cBioPortal reveals a spectrum of alterations in ESR1, including amplification, missense mutation, deep deletion, splice mutation, and truncating mutation, highlighting the genetic complexity of ESR1 in LIHC. These findings collectively contribute to a deeper understanding of ESR1 dysregulation in LIHC and its clinical implications as a potential therapeutic target and prognostic marker.