The findings of a study to ascertain and assess the petrophysical characteristics of Cape Three Points reservoirs in the Western basin with a view to describe the reservoir quantitatively using Well Logs, Petrel and T...The findings of a study to ascertain and assess the petrophysical characteristics of Cape Three Points reservoirs in the Western basin with a view to describe the reservoir quantitatively using Well Logs, Petrel and Techlog. The investigated characteristics, which were all deduced from geophysical wire-line logs, include lithology, porosity, permeability, fluid saturation, and net to gross thickness. To characterise the reservoir on the field, a suite of wire-line logs including gamma ray, resistivity, spontaneous potential, and density logs for three wells (WELL_1X, WELL_2X, and WELL_3X) from the Tano Cape Three Point basin were studied. The analyses that were done included lithology delineation, reservoir identification, and petrophysical parameter determination for the identified reservoirs. The tops and bases of the three wells analysed were marked at a depth of 1203.06 - 2015.64 m, 3863.03 - 4253.85 m and 2497.38 - 2560.32 m respectively. There were no hydrocarbons in the reservoirs from the studies. The petrophysical parameters computed for each reservoir provided porosities of 13%, 3% and 11% respectively. The water saturation also determined for these three wells (WELL_1X, WELL_2X and WELL_3X) were 94%, 95% and 89% respectively. These results together with the behaviour of the density and neutron logs suggested that these wells are wildcat wells.展开更多
Amplitudes have been found to be a function of incident angle and offset. Hence data required to test for amplitude variation with angle or offset needs to have its amplitudes for all offsets preserved and not stacked...Amplitudes have been found to be a function of incident angle and offset. Hence data required to test for amplitude variation with angle or offset needs to have its amplitudes for all offsets preserved and not stacked. Amplitude Variation with Offset (AVO)/Amplitude Variation with Angle (AVA) is necessary to account for information in the offset/angle parameter (mode converted S-wave and P-wave velocities). Since amplitudes are a function of the converted S- and P-waves, it is important to investigate the dependence of amplitudes on the elastic (P- and S-waves) parameters from the seismic data. By modelling these effects for different reservoir fluids via fluid substitution, various AVO geobody classes present along the well and in the entire seismic cube can be observed. AVO analysis was performed on one test well (Well_1) and 3D pre-stack angle gathers from the Tano Basin. The analysis involves creating a synthetic model to infer the effect of offset scaling techniques on amplitude responses in the Tano basin as compared to the effect of unscaled seismic data. The spectral balance process was performed to match the amplitude spectra of all angle stacks to that of the mid (26°) stack on the test lines. The process had an effect primarily on the far (34° - 40°) stacks. The frequency content of these stacks slightly increased to match that of the near and mid stacks. In offset scaling process, the root mean square (RMS) amplitude comparison between the synthetic and seismic suggests that the amplitude of the far traces should be reduced relative to the nears by up to 16%. However, the exact scaler values depend on the time window considered. This suggests that the amplitude scaling with offset delivered from seismic processing is only approximately correct and needs to be checked with well synthetics and adjusted accordingly prior to use for AVO studies. The AVO attribute volumes generated were better at resolving anomalies on spectrally balanced and offset scaled data than data delivered from conventional processing. A typical class II AVO anomaly is seen along the test well from the cross-plot analysis and AVO attribute cube which indicates an oil filled reservoir.展开更多
The discovery of oil in commercial quantity in Ghana has led to increase in infrastructural development to provide the needed services to the oil industry. The siting of these industries requires the characterization ...The discovery of oil in commercial quantity in Ghana has led to increase in infrastructural development to provide the needed services to the oil industry. The siting of these industries requires the characterization of the subsurface to determine its suitability to host these facilities. It is in this line that seismic refraction and geo-electrical surveys were conducted on a site near Takoradi, Ghana that has been planned to host a generator and its appurtenances for the oil industry. The objective of the survey was to provide subsurface information critical for the design of earthing system for the proposed generator plant and its appurtenances. The ABEM SAS4000 Terrameter with the Lund imaging system and a 24-channel ABEM Terraloc MK6 were respectively used for the electrical and seismic refraction data collection. The seismic refraction and resistivity results identify three lithological units namely, dry gravel, sand and silty clay layer, water saturated sand and silty clay layer and granodiorites basement rocks. The first layer has a thickness of 10 m and the second layer with thickness in the range of 5 to 10 m. The lithological classifications as obtained from these results correlate with the drill logs. Electrical grounding will be suitable at a depth of 10 m beneath resistivity profile two at a distance between 32 to 52 m.展开更多
Airborne magnetic and radiometric datasets are used to interpret the geology and geological structural patterns which serve as potential gold mineralization zones in the Kyerano area located at south-western boundary ...Airborne magnetic and radiometric datasets are used to interpret the geology and geological structural patterns which serve as potential gold mineralization zones in the Kyerano area located at south-western boundary of the prospective Sefwi Gold Belt and the Kumasi Basin in south-western Ghana. The geophysical data processing approach adopted concentrated on mapping geological boundaries, geological structures and possible gold mineralization zones is link to hydrothermally altered zones. The application of the enhancement filtering algorithms such as the reduction to the pole and analytic signal to the magnetic data, as well as the ternary radiometric image aided in the mapping of the mafic metavolcanics, basin metasediments and the belt-type granitoid complexes. The first vertical derivative and tilt angle derivative filters helped to delineate fractures, folds, and the contact zones of the formations such as that of the metavolcanics-metasediments that host the main Bibiani Shear Zone. Lineament analysis of the structures using rose diagram, reveals two main tectonic episodes in the area. These are NE-SW and NNW-SSE trending regional structures which account for about 90% of the extracted structures and are associated with the D1 and D2 deformational episodes of the Birimian Formation respectively. These structures are major fracture systems and play a pivotal role in the localization of gold mineralization in the study area.展开更多
文摘The findings of a study to ascertain and assess the petrophysical characteristics of Cape Three Points reservoirs in the Western basin with a view to describe the reservoir quantitatively using Well Logs, Petrel and Techlog. The investigated characteristics, which were all deduced from geophysical wire-line logs, include lithology, porosity, permeability, fluid saturation, and net to gross thickness. To characterise the reservoir on the field, a suite of wire-line logs including gamma ray, resistivity, spontaneous potential, and density logs for three wells (WELL_1X, WELL_2X, and WELL_3X) from the Tano Cape Three Point basin were studied. The analyses that were done included lithology delineation, reservoir identification, and petrophysical parameter determination for the identified reservoirs. The tops and bases of the three wells analysed were marked at a depth of 1203.06 - 2015.64 m, 3863.03 - 4253.85 m and 2497.38 - 2560.32 m respectively. There were no hydrocarbons in the reservoirs from the studies. The petrophysical parameters computed for each reservoir provided porosities of 13%, 3% and 11% respectively. The water saturation also determined for these three wells (WELL_1X, WELL_2X and WELL_3X) were 94%, 95% and 89% respectively. These results together with the behaviour of the density and neutron logs suggested that these wells are wildcat wells.
文摘Amplitudes have been found to be a function of incident angle and offset. Hence data required to test for amplitude variation with angle or offset needs to have its amplitudes for all offsets preserved and not stacked. Amplitude Variation with Offset (AVO)/Amplitude Variation with Angle (AVA) is necessary to account for information in the offset/angle parameter (mode converted S-wave and P-wave velocities). Since amplitudes are a function of the converted S- and P-waves, it is important to investigate the dependence of amplitudes on the elastic (P- and S-waves) parameters from the seismic data. By modelling these effects for different reservoir fluids via fluid substitution, various AVO geobody classes present along the well and in the entire seismic cube can be observed. AVO analysis was performed on one test well (Well_1) and 3D pre-stack angle gathers from the Tano Basin. The analysis involves creating a synthetic model to infer the effect of offset scaling techniques on amplitude responses in the Tano basin as compared to the effect of unscaled seismic data. The spectral balance process was performed to match the amplitude spectra of all angle stacks to that of the mid (26°) stack on the test lines. The process had an effect primarily on the far (34° - 40°) stacks. The frequency content of these stacks slightly increased to match that of the near and mid stacks. In offset scaling process, the root mean square (RMS) amplitude comparison between the synthetic and seismic suggests that the amplitude of the far traces should be reduced relative to the nears by up to 16%. However, the exact scaler values depend on the time window considered. This suggests that the amplitude scaling with offset delivered from seismic processing is only approximately correct and needs to be checked with well synthetics and adjusted accordingly prior to use for AVO studies. The AVO attribute volumes generated were better at resolving anomalies on spectrally balanced and offset scaled data than data delivered from conventional processing. A typical class II AVO anomaly is seen along the test well from the cross-plot analysis and AVO attribute cube which indicates an oil filled reservoir.
文摘The discovery of oil in commercial quantity in Ghana has led to increase in infrastructural development to provide the needed services to the oil industry. The siting of these industries requires the characterization of the subsurface to determine its suitability to host these facilities. It is in this line that seismic refraction and geo-electrical surveys were conducted on a site near Takoradi, Ghana that has been planned to host a generator and its appurtenances for the oil industry. The objective of the survey was to provide subsurface information critical for the design of earthing system for the proposed generator plant and its appurtenances. The ABEM SAS4000 Terrameter with the Lund imaging system and a 24-channel ABEM Terraloc MK6 were respectively used for the electrical and seismic refraction data collection. The seismic refraction and resistivity results identify three lithological units namely, dry gravel, sand and silty clay layer, water saturated sand and silty clay layer and granodiorites basement rocks. The first layer has a thickness of 10 m and the second layer with thickness in the range of 5 to 10 m. The lithological classifications as obtained from these results correlate with the drill logs. Electrical grounding will be suitable at a depth of 10 m beneath resistivity profile two at a distance between 32 to 52 m.
文摘Airborne magnetic and radiometric datasets are used to interpret the geology and geological structural patterns which serve as potential gold mineralization zones in the Kyerano area located at south-western boundary of the prospective Sefwi Gold Belt and the Kumasi Basin in south-western Ghana. The geophysical data processing approach adopted concentrated on mapping geological boundaries, geological structures and possible gold mineralization zones is link to hydrothermally altered zones. The application of the enhancement filtering algorithms such as the reduction to the pole and analytic signal to the magnetic data, as well as the ternary radiometric image aided in the mapping of the mafic metavolcanics, basin metasediments and the belt-type granitoid complexes. The first vertical derivative and tilt angle derivative filters helped to delineate fractures, folds, and the contact zones of the formations such as that of the metavolcanics-metasediments that host the main Bibiani Shear Zone. Lineament analysis of the structures using rose diagram, reveals two main tectonic episodes in the area. These are NE-SW and NNW-SSE trending regional structures which account for about 90% of the extracted structures and are associated with the D1 and D2 deformational episodes of the Birimian Formation respectively. These structures are major fracture systems and play a pivotal role in the localization of gold mineralization in the study area.