期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Composite Panels from the Combination of Rice Husk and Wood Chips with a Natural Resin Based on Tannins Reinforced with Sugar Cane Molasses Intended for Building Insulation: Physico-Mechanical and Thermal Properties
1
作者 Paul Nestor Djomou Djonga Rosellyne Serewane Deramne +2 位作者 Gustave Assoualaye Ahmat tom tégawendé justin zaida 《Journal of Materials Science and Chemical Engineering》 2024年第2期19-30,共12页
The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips an... The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips and husks are materials which can have good thermal conductivity and therefore the combination of these precursors could make it possible to obtain panels with good insulating properties. With regard to environmental and climatic constraints, the composite panels formulated at various rates were tested and the physico-mechanical and thermal properties showed that it was essential to add a crosslinker in order to increase certain solicitation. an incorporation rate of 12% to 30% made it possible to obtain panels with low thermal conductivity, a low surface water absorption capacity and which gives the composite good thermal insulation and will find many applications in the construction and real estate sector. Finally, new solutions to improve the fire reaction of the insulation panels are tested which allows to identify suitable solutions for the developed composites. In view of the flame tests, the panels obtained are good and can effectively combat fire safety in public buildings. 展开更多
关键词 Composite Panels Tannins Reinforced Sugar Cane Molasses Building Insulation Mechanical and Thermal Properties
下载PDF
Experimental Alternative to the Determination of the Thermal Dependence of the Complex Modulus of Asphalt Mixes in Dry Tropical Areas
2
作者 Sidpouita Mathilde Koudougou Guy Christian tubreoumya +1 位作者 David Yemboini Kader toguyeni tégawendé justin zaida 《Journal of Minerals and Materials Characterization and Engineering》 2022年第3期275-286,共12页
Current pavement design methods do not allow for the reduction of early deformation of the surface layers of bituminous pavements in the city of Ouagadougou. Weather conditions combined with traffic, particularly duri... Current pavement design methods do not allow for the reduction of early deformation of the surface layers of bituminous pavements in the city of Ouagadougou. Weather conditions combined with traffic, particularly during heat waves, are factors. The temperature at the surface of the bituminous pavement can reach 62&#730;C but the complex modulus associated with this temperature is not taken into account in the design, hence the interest in proposing laws of dependence of the complex moduli is taken into account in the maximum temperatures of the pavement surface. The objective of this paper is to propose an experimental method to determine the temperature dependence of the complex moduli of asphalt mixes for temperatures between 40&#730;C and 70&#730;C. This experimental method consists of performing axial compression tests on cylindrical asphalt specimens. It was applied to three different formulas of bituminous mixes, intended for the wearing course, obtained from mixes of crushed granites, granular classes 6/10, 4/6 and 0/4, pure bitumens of grade 50/70, 35/50 and modified bitumen of grade 10/65. The comparative study of the experimental results obtained with the results of a semi-empirical methodology revealed a root mean square deviation from the mean of between 6.58% and 14.8% of the norms of the complex moduli (modulus of rigidity) of the asphalt mixes for a fixed frequency of solicitations of 10 Hz. The consistency of these results with data from the literature led to the initial conclusion that asphalt mixes formulated with 35/50 and 10/65 bitumen would have better compressive strength than those formulated with 50/70 bitumen, for exposure temperatures between 40&#730;C and 70&#730;C. This experimental approach could be an alternative to the complex modulus test for determining the modulus of rigidity for design purposes under real pavement exposure conditions in the city of Ouagadougou during heat waves. 展开更多
关键词 Asphalt Mix Complex Modulus Axial Compression Semi-Empirical Methodology
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部