Nitriding of surface of aluminum alloys was carried out with using an electron-beam-excited-plasma (EBEP) technique. The EBEP is sustained by electron impact ionization with energetic electron beam. Two kinds of subst...Nitriding of surface of aluminum alloys was carried out with using an electron-beam-excited-plasma (EBEP) technique. The EBEP is sustained by electron impact ionization with energetic electron beam. Two kinds of substrates, aluminum alloys AA5052 and AA5083, were exposed to the down flow of EBEP source at 843 K for 45min. The specimens were characterized with respect to following properties: crystallographic structure (XRD), morphology (SEM) and the cross sectional microstructures of the nitrided layer was observed using a scanning electron microscopy (SEM). There are some A12O3 particles on the surface of the nitrided AA5052 and AA5083. The A1N layers were formed on the substrates with the thickness of 4.5 fi m for AA5052 and 0.5 /z m for AA5083 . A relatively uniform nitrided surface layer composed of A1N can be observed on the AA5052 substrate. The grains size near the interfaces between the substrate and A1N layer were smaller than that near the surface. On the surface of A1N layer, the concentration of nitrogen was high and in the middle of A1N layer it had a constant concentration like the aluminum and the concentration was decreased with approaching to the interface. On the surface of nitrided AA5083, a uniform A1N layer was not formed as the reason for the high nitriding temperature.展开更多
From April to July 2018,a data sample at the peak energy of the T(4 S) resonance was collected with the Belle Ⅱ detector at the SuperKEKB electron-positron collider.This is the first data sample of the Belle Ⅱ exper...From April to July 2018,a data sample at the peak energy of the T(4 S) resonance was collected with the Belle Ⅱ detector at the SuperKEKB electron-positron collider.This is the first data sample of the Belle Ⅱ experiment.Using Bhabha and digamma events,we measure the integrated luminosity of the data sample to be(496.3±0.3±3.0) pb-1,where the first uncertainty is statistical and the second is systematic.This work provides a basis for future luminosity measurements at Belle Ⅱ.展开更多
A fully coherent free electron laser(FEL) seeded with a higher-order harmonic(HH) pulse from high-order harmonic generation(HHG) is successfully operated for a sufficiently prolonged time in pilot user experiments by ...A fully coherent free electron laser(FEL) seeded with a higher-order harmonic(HH) pulse from high-order harmonic generation(HHG) is successfully operated for a sufficiently prolonged time in pilot user experiments by using a timing drift feedback. For HHG-seeded FELs, the seeding laser pulses have to be synchronized with electron bunches. Despite seeded FELs being non-chaotic light sources in principle, external laser-seeded FELs are often unstable in practice because of a timing jitter and a drift between the seeding laser pulses and the accelerated electron bunches. Accordingly,we constructed a relative arrival-timing monitor based on non-invasive electro-optic sampling(EOS). The EOS monitor made uninterrupted shot-to-shot monitoring possible even during the seeded FEL operation. The EOS system was then used for arrival-timing feedback with an adjustability of 100 fs for continual operation of the HHG-seeded FEL. Using the EOS-based beam drift controlling system, the HHG-seeded FEL was operated over half a day with an effective hit rate of 20%–30%. The output pulse energy was 20 μJ at the 61.2 nm wavelength. Towards seeded FELs in the water window region, we investigated our upgrade plan to seed high-power FELs with HH photon energy of 30–100 e V and lase at shorter wavelengths of up to 2 nm through high-gain harmonic generation(HGHG) at the energy-upgraded SPring-8Compact SASE Source(SCSS) accelerator. We studied a benefit as well as the feasibility of the next HHG-seeded FEL machine with single-stage HGHG with tunability of a lasing wavelength.展开更多
Japan is a mountainous country comprising several islands,in which mountains occupy 70%of the entire land.Therefore,numerous transmission line towers have been constructed in the shallow space of steep mountainous are...Japan is a mountainous country comprising several islands,in which mountains occupy 70%of the entire land.Therefore,numerous transmission line towers have been constructed in the shallow space of steep mountainous areas.In such construction,monorails and/or cableways are generally used to transport materials and equipment to the construction site instead of using a construction road,as the former method is more economically viable.However,with this method,drill rigs or vertical shaft sinking machines cannot be transported to the site.Four small-diameter vertical shafts of 2.5 or 3.0 m as the foundation for high-voltage transmission line towers in mountainous areas are traditionally constructed manually in Japan.Over the past two decades,however,dangerous and poor environmental conditions for workers regarding the manual construction of these small-diameter vertical shafts have become a major problem.Meanwhile,owing to the poor environmental conditions of small-diameter vertical shafts to be constructed in the shallow space of steep mountainous areas,a decrease has occurred in the number of young workers entering these projects.Namely,the construction of transmission line towers with using the manually traditional small-diameter vertical shafts is becoming difficult in Japan from abovementioned problems.Hence development of a new technology to solve the problems is necessary for Japan’s economic growth.With this knowledge,the authors have developed a new small-diameter vertical shaft construction system,in which workers do not have to enter the vertical shaft during construction,as machines are used instead.The applicability of the proposed system was confirmed by means of the construction of three actual vertical shafts at two construction sites,as well as in factory and field tests.The applicability and details of the final proposed system are summarized in this paper.展开更多
文摘Nitriding of surface of aluminum alloys was carried out with using an electron-beam-excited-plasma (EBEP) technique. The EBEP is sustained by electron impact ionization with energetic electron beam. Two kinds of substrates, aluminum alloys AA5052 and AA5083, were exposed to the down flow of EBEP source at 843 K for 45min. The specimens were characterized with respect to following properties: crystallographic structure (XRD), morphology (SEM) and the cross sectional microstructures of the nitrided layer was observed using a scanning electron microscopy (SEM). There are some A12O3 particles on the surface of the nitrided AA5052 and AA5083. The A1N layers were formed on the substrates with the thickness of 4.5 fi m for AA5052 and 0.5 /z m for AA5083 . A relatively uniform nitrided surface layer composed of A1N can be observed on the AA5052 substrate. The grains size near the interfaces between the substrate and A1N layer were smaller than that near the surface. On the surface of A1N layer, the concentration of nitrogen was high and in the middle of A1N layer it had a constant concentration like the aluminum and the concentration was decreased with approaching to the interface. On the surface of nitrided AA5083, a uniform A1N layer was not formed as the reason for the high nitriding temperature.
基金supported by the following funding sources:Science Committee of the Republic of Armenia Grant No.18T-1C180Australian Research Council and research grant Nos.DP180102629,DP170102389,DP170102204,DP150103061,FT130100303,and FT130100018+37 种基金Austrian Federal Ministry of Education,Science and Research,and Austrian Science Fund No.P 31361-N36Natural Sciences and Engineering Research Council of Canada,Compute Canada and CANARIEChinese Academy of Sciences and research grant No.QYZDJ-SSW-SLH011National Natural Science Foundation of China and research grant Nos.11521505,11575017,11675166,11761141009,11705209,and 11975076LiaoNing Revitalization Talents Program under contract No.XLYC1807135Shanghai Municipal Science and Technology Committee under contract No.19ZR1403000Shanghai Pujiang Program under Grant No.18PJ1401000the CAS Center for Excellence in Particle Physics(CCEPP)the Ministry of Education,Youth and Sports of the Czech Republic under Contract No.LTT17020Charles University grants SVV260448 and GAUK 404316European Research Council,7th Framework PIEF-GA-2013-622527Horizon 2020 Marie Sklodowska-Curie grant agreement No.700525’NIOBE,’Horizon 2020 Marie Sklodowska-Curie RISE project JENNIFER grant agreement No.644294Horizon 2020 ERC-Advanced Grant No.267104NewAve No.638528(European grants)L’Institut National de Physique Nucléaire et de Physique des Particules(IN2P3)du CNRS(France),BMBF,DFG,HGF,MPG and AvH Foundation(Germany)Department of Atomic Energy and Department of Science and Technology(India)Israel Science Foundation grant No.2476/17United States-Israel Binational Science Foundation grant No.2016113Istituto Nazionale di Fisica Nucleare and the research grants BELLE2Japan Society for the Promotion of Science,Grant-in-Aid for Scientific Research grant Nos.16H03968,16H03993,16H06492,16K05323,17H01133,17H05405,18K03621,18H03710,18H05226,19H00682,26220706,and 26400255the National Institute of Informatics,and Science Information NETwork 5(SINET5)the Ministry of Education,Culture,Sports,Science,and Technology(MEXT)of JapanNational Research Foundation(NRF)of Korea Grant Nos.2016R1D1A1B01010135,2016R1D1A1B02012900,2018R1A2B3003643,2018R1A6A1A06024970,2018R1D1A1B07047294,2019K1A3A7A09033840,and 2019R1I1A3A01058933Radiation Science Research Institute,Foreign Large-size Research Facility Application Supporting project,the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIADUniversiti Malaya RU grant,Akademi Sains Malaysia and Ministry of Education MalaysiaFrontiers of Science Program contracts FOINS-296,CB-221329,CB-236394,CB-254409,and CB-180023,and the Thematic Networks program(Mexico)the Polish Ministry of Science and Higher Education and the National Science Centerthe Ministry of Science and Higher Education of the Russian Federation,Agreement14.W03.31.0026Slovenian Research Agency and research grant Nos.J1-9124 and P1-0135Agencia Estatal de Investigacion,Spain grant Nos.FPA2014-55613-P and FPA2017-84445-P,and CIDEGENT/2018/020 of Generalitat ValencianaMinistry of Science and Technology and research grant Nos.MOST106-2112-M-002-005-MY3 and MOST107-2119-M-002-035-MY3,and the Ministry of Education(Taiwan)Thailand Center of Excellence in PhysicsTUBITAK ULAKBIM(Turkey)Ministry of Education and Science of Ukrainethe US National Science Foundation and research grant Nos.PHY-1807007 and PHY-1913789the US Department of Energy and research grant Nos.DE-AC06-76RLO1830,DE-SC0007983,DE-SC0009824,DE-SC0009973,DE-SC0010073,DE-SC0010118,DE-SC0010504,DESC0011784,DE-SC0012704the National Foundation for Science and Technology Development(NAFOSTED)of Vietnam under grant No 103.99-2018.45
文摘From April to July 2018,a data sample at the peak energy of the T(4 S) resonance was collected with the Belle Ⅱ detector at the SuperKEKB electron-positron collider.This is the first data sample of the Belle Ⅱ experiment.Using Bhabha and digamma events,we measure the integrated luminosity of the data sample to be(496.3±0.3±3.0) pb-1,where the first uncertainty is statistical and the second is systematic.This work provides a basis for future luminosity measurements at Belle Ⅱ.
文摘A fully coherent free electron laser(FEL) seeded with a higher-order harmonic(HH) pulse from high-order harmonic generation(HHG) is successfully operated for a sufficiently prolonged time in pilot user experiments by using a timing drift feedback. For HHG-seeded FELs, the seeding laser pulses have to be synchronized with electron bunches. Despite seeded FELs being non-chaotic light sources in principle, external laser-seeded FELs are often unstable in practice because of a timing jitter and a drift between the seeding laser pulses and the accelerated electron bunches. Accordingly,we constructed a relative arrival-timing monitor based on non-invasive electro-optic sampling(EOS). The EOS monitor made uninterrupted shot-to-shot monitoring possible even during the seeded FEL operation. The EOS system was then used for arrival-timing feedback with an adjustability of 100 fs for continual operation of the HHG-seeded FEL. Using the EOS-based beam drift controlling system, the HHG-seeded FEL was operated over half a day with an effective hit rate of 20%–30%. The output pulse energy was 20 μJ at the 61.2 nm wavelength. Towards seeded FELs in the water window region, we investigated our upgrade plan to seed high-power FELs with HH photon energy of 30–100 e V and lase at shorter wavelengths of up to 2 nm through high-gain harmonic generation(HGHG) at the energy-upgraded SPring-8Compact SASE Source(SCSS) accelerator. We studied a benefit as well as the feasibility of the next HHG-seeded FEL machine with single-stage HGHG with tunability of a lasing wavelength.
文摘Japan is a mountainous country comprising several islands,in which mountains occupy 70%of the entire land.Therefore,numerous transmission line towers have been constructed in the shallow space of steep mountainous areas.In such construction,monorails and/or cableways are generally used to transport materials and equipment to the construction site instead of using a construction road,as the former method is more economically viable.However,with this method,drill rigs or vertical shaft sinking machines cannot be transported to the site.Four small-diameter vertical shafts of 2.5 or 3.0 m as the foundation for high-voltage transmission line towers in mountainous areas are traditionally constructed manually in Japan.Over the past two decades,however,dangerous and poor environmental conditions for workers regarding the manual construction of these small-diameter vertical shafts have become a major problem.Meanwhile,owing to the poor environmental conditions of small-diameter vertical shafts to be constructed in the shallow space of steep mountainous areas,a decrease has occurred in the number of young workers entering these projects.Namely,the construction of transmission line towers with using the manually traditional small-diameter vertical shafts is becoming difficult in Japan from abovementioned problems.Hence development of a new technology to solve the problems is necessary for Japan’s economic growth.With this knowledge,the authors have developed a new small-diameter vertical shaft construction system,in which workers do not have to enter the vertical shaft during construction,as machines are used instead.The applicability of the proposed system was confirmed by means of the construction of three actual vertical shafts at two construction sites,as well as in factory and field tests.The applicability and details of the final proposed system are summarized in this paper.