期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enhanced Archimedes Optimization Algorithm for Clustered Wireless Sensor Networks
1
作者 E.Laxmi Lydia t.m.nithya +3 位作者 K.Vijayalakshmi Jeya Prakash Kadambaajan Gyanendra Prasad Joshi Sung Won Kim 《Computers, Materials & Continua》 SCIE EI 2022年第10期477-492,共16页
Wireless sensor networks(WSN)encompass a set of inexpensive and battery powered sensor nodes,commonly employed for data gathering and tracking applications.Optimal energy utilization of the nodes in WSN is essential t... Wireless sensor networks(WSN)encompass a set of inexpensive and battery powered sensor nodes,commonly employed for data gathering and tracking applications.Optimal energy utilization of the nodes in WSN is essential to capture data effectively and transmit them to destination.The latest developments of energy efficient clustering techniques can be widely applied to accomplish energy efficiency in the network.In this aspect,this paper presents an enhanced Archimedes optimization based cluster head selection(EAOA-CHS)approach for WSN.The goal of the EAOA-CHS method is to optimally choose the CHs from the available nodes in WSN and then organize the nodes into a set of clusters.Besides,the EAOA is derived by the incorporation of the chaotic map and pseudo-random performance.Moreover,the EAOA-CHS technique determines a fitness function involving total energy consumption and lifetime of WSN.The design of EAOA for CH election in the WSN depicts the novelty of work.In order to exhibit the enhanced efficiency of EAOA-CHS technique,a set of simulations are applied on 3 distinct conditions dependent upon the place of base station(BS).The simulation results pointed out the better outcomes of the EAOA-CHS technique over the recent methods under all scenarios. 展开更多
关键词 Wireless sensor network CH selection energy efficiency CLUSTERING LIFETIME
下载PDF
Deep LearningModel for Big Data Classification in Apache Spark Environment
2
作者 t.m.nithya R.Umanesan +2 位作者 T.Kalavathidevi C.Selvarathi A.Kavitha 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2537-2547,共11页
Big data analytics is a popular research topic due to its applicability in various real time applications.The recent advent of machine learning and deep learning models can be applied to analyze big data with better p... Big data analytics is a popular research topic due to its applicability in various real time applications.The recent advent of machine learning and deep learning models can be applied to analyze big data with better performance.Since big data involves numerous features and necessitates high computational time,feature selection methodologies using metaheuristic optimization algorithms can be adopted to choose optimum set of features and thereby improves the overall classification performance.This study proposes a new sigmoid butterfly optimization method with an optimum gated recurrent unit(SBOA-OGRU)model for big data classification in Apache Spark.The SBOA-OGRU technique involves the design of SBOA based feature selection technique to choose an optimum subset of features.In addition,OGRU based classification model is employed to classify the big data into appropriate classes.Besides,the hyperparameter tuning of the GRU model takes place using Adam optimizer.Furthermore,the Apache Spark platform is applied for processing big data in an effective way.In order to ensure the betterment of the SBOA-OGRU technique,a wide range of experiments were performed and the experimental results highlighted the supremacy of the SBOA-OGRU technique. 展开更多
关键词 Big data apache spark classification feature selection gated recurrent unit adam optimizer
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部