The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surfa...The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surface are modeled,and then are nondimensionalized by suitable dimensionless terms.Further,the obtained nondimensional equations are solved by the clique polynomial method(CPM).The effects of several dimensionless parameters on the fin's thermal profiles are shown by graphical illustrations.Additionally,the current study implements deep neural structures to solve physics-governed coupled equations,and the best-suited hyperparameters are attained by comparison with various network combinations.The results of the CPM and physicsinformed neural network(PINN)exhibit good agreement,signifying that both methods effectively solve the thermal modeling problem.展开更多
The viscous dissipation and heat transfer in the Darcy-Forchheimer flow by a rotating disk are examined. The partial slip conditions are invoked. The optimal series solutions are computed via the optimal homotopic ana...The viscous dissipation and heat transfer in the Darcy-Forchheimer flow by a rotating disk are examined. The partial slip conditions are invoked. The optimal series solutions are computed via the optimal homotopic analysis method(OHAM). The thermophoresis and Brownian motions are studied. The Darcy-Forchheimer relation characterizes the porous space. The roles of influential variables on the physical quantities are graphically examined. A reduction in the local Nusselt number is observed through thermophoresis and thermal slip parameters. The local Sherwood number depicts an increasing trend for the higher Brownian motion and concentration slip parameters.展开更多
The present research explores the three-dimensional boundary layer flow of the Maxwell nanofluid. The flow is generated by a bidirectional stretching surface. The mathematical formulation is carried out through a boun...The present research explores the three-dimensional boundary layer flow of the Maxwell nanofluid. The flow is generated by a bidirectional stretching surface. The mathematical formulation is carried out through a boundary layer approach with the heat source/sink, the Brownian motion, and the thermophoresis effects. The newly developed boundary conditions requiring zero nanoparticle mass flux at the boundary are employed in the flow analysis for the Maxwell fluid. The governing nonlinear boundary layer equations through appropriate transformations are reduced to the coupled nonlin- ear ordinary differential system. The resulting nonlinear system is solved. Graphs are plotted to examine the effects of various interesting parameters on the non-dimensional velocities, temperature, and concentration fields. The values of the local Nusselt number are computed and examined numerically.展开更多
基金funding this work through Small Research Project under grant number RGP.1/141/45。
文摘The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surface are modeled,and then are nondimensionalized by suitable dimensionless terms.Further,the obtained nondimensional equations are solved by the clique polynomial method(CPM).The effects of several dimensionless parameters on the fin's thermal profiles are shown by graphical illustrations.Additionally,the current study implements deep neural structures to solve physics-governed coupled equations,and the best-suited hyperparameters are attained by comparison with various network combinations.The results of the CPM and physicsinformed neural network(PINN)exhibit good agreement,signifying that both methods effectively solve the thermal modeling problem.
文摘The viscous dissipation and heat transfer in the Darcy-Forchheimer flow by a rotating disk are examined. The partial slip conditions are invoked. The optimal series solutions are computed via the optimal homotopic analysis method(OHAM). The thermophoresis and Brownian motions are studied. The Darcy-Forchheimer relation characterizes the porous space. The roles of influential variables on the physical quantities are graphically examined. A reduction in the local Nusselt number is observed through thermophoresis and thermal slip parameters. The local Sherwood number depicts an increasing trend for the higher Brownian motion and concentration slip parameters.
文摘The present research explores the three-dimensional boundary layer flow of the Maxwell nanofluid. The flow is generated by a bidirectional stretching surface. The mathematical formulation is carried out through a boundary layer approach with the heat source/sink, the Brownian motion, and the thermophoresis effects. The newly developed boundary conditions requiring zero nanoparticle mass flux at the boundary are employed in the flow analysis for the Maxwell fluid. The governing nonlinear boundary layer equations through appropriate transformations are reduced to the coupled nonlin- ear ordinary differential system. The resulting nonlinear system is solved. Graphs are plotted to examine the effects of various interesting parameters on the non-dimensional velocities, temperature, and concentration fields. The values of the local Nusselt number are computed and examined numerically.