The joint European Space Agency and Chinese Academy of Sciences Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will explore global dynamics of the magnetosphere under varying solar wind and interplane...The joint European Space Agency and Chinese Academy of Sciences Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will explore global dynamics of the magnetosphere under varying solar wind and interplanetary magnetic field conditions,and simultaneously monitor the auroral response of the Northern Hemisphere ionosphere.Combining these large-scale responses with medium and fine-scale measurements at a variety of cadences by additional ground-based and space-based instruments will enable a much greater scientific impact beyond the original goals of the SMILE mission.Here,we describe current community efforts to prepare for SMILE,and the benefits and context various experiments that have explicitly expressed support for SMILE can offer.A dedicated group of international scientists representing many different experiment types and geographical locations,the Ground-based and Additional Science Working Group,is facilitating these efforts.Preparations include constructing an online SMILE Data Fusion Facility,the discussion of particular or special modes for experiments such as coherent and incoherent scatter radar,and the consideration of particular observing strategies and spacecraft conjunctions.We anticipate growing interest and community engagement with the SMILE mission,and we welcome novel ideas and insights from the solar-terrestrial community.展开更多
A novel process for synthesizing nano-ceramics powders, named mechanical & therm al activation processing, is discussed in the present paper. It is a processing based on thermal activation in liquid phase (molten ...A novel process for synthesizing nano-ceramics powders, named mechanical & therm al activation processing, is discussed in the present paper. It is a processing based on thermal activation in liquid phase (molten salt) after mechanical activ ation. The nanometer-sized TiC particles (15-20nm) have been synthesized by the method, and analyzed by X-ray diffraction (XRD), transmission electron microscop e (TEM), scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) sp ectroscopy. An interface interaction between liquid (molten salt) and solid (fin al product particles) phases plays a dominating role for the control of product particles size. The mechanism for the formation of nanometer-sized TiC particles has been discussed.展开更多
The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the ...The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the statistical uncertainty is negligible.Meanwhile,the numbers ofψ(3686)events collected during the 2009 and 2012run periods are updated to be(107.7±0.6)×10~6 and(345.4±2.6)×10~6,respectively.Both numbers are consistent with the previous measurements within one standard deviation.The total number ofψ(3686)events in the three data samples is(2712.4±14.3)×10~6.展开更多
Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays...Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.展开更多
Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESⅢdetector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 fb^(-1),th...Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESⅢdetector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 fb^(-1),the process e^(+)e^(-)→pppñπ+c.c.is observed for the first time with a statistical significance of 11.5σ.The average Born cross sections in the energy ranges of(4.160,4.380)GeV,(4.400,4.600)GeV and(4.610,4.700)GeV are measured to be(21.5±5.7±1.2)fb,(46.3±10.6±2.5)fb and(59.0±9.4±3.2)fb,respectively,where the first uncertainties are statistical and the second are systematic.The line shapes of the pñ and ppπ^(-)invariant mass spectra are consistent with phase space distributions,indicating that no hexaquark or di-baryon state is observed.展开更多
We report a search for a heavier partner of the recently observed Z_(cs)(3985)^(-) state,denoted as Z_(cs)^('-),in the process e^(+)e^(−)→K^(+)D_(s)^(∗−) D^(∗0 )+ c.c.,based on e^(*)e^(-)collision data collected ...We report a search for a heavier partner of the recently observed Z_(cs)(3985)^(-) state,denoted as Z_(cs)^('-),in the process e^(+)e^(−)→K^(+)D_(s)^(∗−) D^(∗0 )+ c.c.,based on e^(*)e^(-)collision data collected at the center-of-mass energies of √s=4.661,4.682 and 4.699 GeV with the BESIII detector.The Z_(cs)^('-) is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark.A partial-reconstruction technique is used to isolate K^(+)recoil-mass spectra,which are probed for a potential contribution from Z_(cs)^('-)→D_(s)^(∗−) D^(∗0 )+ c.c.We find an excess of Z_(cs)^('-)→D_(s)^(*-)-D^(*0)(c.c.)candidates with a significance of 2.1o,after considering systematic uncertainties,at a mass of(4123.5±0.7_(sat)±4.7_(syst.))MeV/c^(2).As the data set is limited in size,the upper limits are evaluated at the 90%confidence level on the product of the Born cross sections(σ^(Borm))and the branching fraction(B)of Z_(cs)^('-)→D_(s)^(*-)-D^(*0),under different assumptions of the Z_(cs)^('-) mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV at the three center-of-mass energies.The upper limits of σ^(Born).B are found to be at the level of O(1)pb at each energy.Larger data samples are needed to confirm the Z_(cs)^('-) state and clarify its nature in the coming years.展开更多
Using(448.1±2.9)×10^(6)ψ(3686)for the weak baryonic decayψ(3686)→Λc+∑-+c.c..The analysis procedure is optimized using a blinded method.No significant signal is observed,and the upper limit on the branch...Using(448.1±2.9)×10^(6)ψ(3686)for the weak baryonic decayψ(3686)→Λc+∑-+c.c..The analysis procedure is optimized using a blinded method.No significant signal is observed,and the upper limit on the branching fraction(B)ofψ(3686)→Λc+∑-+c.c.is set as 1.4×10^(-5)at the 90%confidence level.展开更多
Using electron-positron annihilation data samples corresponding to an integrated luminosity of 4.5 fb-1,collected by the BESⅢdetector in the energy region between 4599.53 MeV and 4698.82 MeV,we report the first obser...Using electron-positron annihilation data samples corresponding to an integrated luminosity of 4.5 fb-1,collected by the BESⅢdetector in the energy region between 4599.53 MeV and 4698.82 MeV,we report the first observations of the Cabibbo-suppressed decaysΛ_(c)^(+)→nπ^(+)π^(0),Λ_(c)^(+)→nπ^(+)π^(-)π^(+),and the Cabibbo-favored decayΛ_(c)^(+)→nK^(-)π^(+)π^(+)with statistical significances of 7.9σ,7.8σ,and>10σ,respectively.The branching fractions of these decays are measured to be B(Λ_(c)^(+)→nπ^(+)π^(0))=(0.64±0.09±0.02)%,B(Λ_(c)^(+)→nπ^(+)π^(-)π^(+))=(0.45±0.07±0.03)%,and B(Λ_(c)^(+)→nK^(-)π^(+)π^(+))=(1.90±0.08±0.09)%,where the first uncertainties are statistical and the second are systematic.We find that the branching fraction of the decayΛ_(c)^(+)→nπ^(+)π^(0)is about one order of magnitude higher than that ofΛ_(c)^(+)→nπ^(+).展开更多
During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the ...During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the study of excited charmonium and charmoniumlike states.By analyzing the di-muon process e^(+)e^(-)→(γISR=FSR)μ^(+)μ^(-),we measure the center-of-mass energies of the data samples with a precision of 0.6 MeV.Through a run-by-run study,we find that the center-of-mass energies were stable throughout most of the data-collection period.展开更多
Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,na...Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,namely Bhabha scattering,dimuon production and generic hadronic events with charged particles.The combined efficiency of all active triggers approaches 100%in most cases,with uncertainties small enough not to affect most physics analyses.展开更多
Using inclusive decays of J/ψ aprecise determination of the number of J/ψ events collected with the BESIII detector was performed.For the two data sets taken in 2009 and 2012,the numbers of J/ψ events were recalcul...Using inclusive decays of J/ψ aprecise determination of the number of J/ψ events collected with the BESIII detector was performed.For the two data sets taken in 2009 and 2012,the numbers of J/ψ events were recalculated to be(224.0±1.3)×10^(6) and(1088.5±4.4)×10^(6),respectively;these numbers are in good agreement with the previous measurements. For the J/ψ sample taken in 2017-2019,the number of events was determined to be(8774.0±39.4)×10^(6).The total number of J/ψ events collected with the BESIII detector was determined to be(10087±44)×10^(6),where the uncertainty is dominated by systematic effects,and the statistical uncertainty is negligible.展开更多
In vitro three-dimensional(3D)cellular models with native tissue-like architectures and functions have potential as alternatives to human tissues in regenerative medicine and drug discovery.However,it is difficult to ...In vitro three-dimensional(3D)cellular models with native tissue-like architectures and functions have potential as alternatives to human tissues in regenerative medicine and drug discovery.However,it is difficult to replicate liver constructs that mimic in vivo microenvironments using current approaches in tissue engineering because of the vessel-embedded 3D structure and complex cell distribution of the liver.This paper reports a pulsed microflow-based on-chip 3D assembly method to construct 3D liver lobule-like models that replicate the spatial structure and functions of the liver lobule.The heterogeneous cell-laden assembly units with hierarchical cell distribution are fabricated through multistep photopatterning of different cell-laden hydrogels.Through fluid force interaction by pulsed microflow,the hierarchical assembly units are driven to a stack,layer by layer,and thus spatially assemble into 3D cellular models in the closed liquid chamber of the assembly chip.The 3D models with liver lobule-like hexagonal morphology and radial cell distribution allow the dynamic perfusion culture to maintain high cell viability and functional expression during long-term culture in vitro.These results demonstrate that the fabricated 3D liver lobule-like models are promising for drug testing and the study of individual diagnoses and treatments.展开更多
The integrated luminosities of data samples collected in the BESⅢ experiment in 2016-2017 at centerof-mass energies between 4.19 and 4.28 GeV are measured with a precision better than 1% by analyzing large-angle Bhab...The integrated luminosities of data samples collected in the BESⅢ experiment in 2016-2017 at centerof-mass energies between 4.19 and 4.28 GeV are measured with a precision better than 1% by analyzing large-angle Bhabha scattering events.The integrated luminosities of old datasets collected in 2010-2014 are updated by considering corrections related to detector performance,offsetting the effect of newly discovered readout errors in the electromagnetic calorimeter,which can haphazardly occur.展开更多
From December 2019 to June 2021,the BESⅢ experiment collected approximately 5.85 fb^(−1) of data at center-of-mass energies between 4.61 and 4.95 GeV.This is the highest collision energy BEPCⅡ has reached to date.Th...From December 2019 to June 2021,the BESⅢ experiment collected approximately 5.85 fb^(−1) of data at center-of-mass energies between 4.61 and 4.95 GeV.This is the highest collision energy BEPCⅡ has reached to date.The accumulated e^(+)e^(−) annihilation data samples are useful for studying charmonium(-like)states and charmed-hadron decays.By adopting a novel method of analyzing the production of A_(c)^(+)A_(c)^(-) pairs in e^(+)e^(−) annihilation,the center-of-mass energies are measured with a precision of 0.6 MeV.Integrated luminosities are measured with a precision of better than 1% by analyzing the events of large-angle Bhabha scattering.These measurements provide important inputs to analyses based on these data samples.展开更多
The cross sections of e^(+)e^(-)→K^(+)K^(-)J/Ψat center-of-mass energies from 4.127 to 4.600 GeV are measured based on 15.6 fb-1data collected with the BESⅢ detector operating at the BEPCⅡ storage ring.Two resonan...The cross sections of e^(+)e^(-)→K^(+)K^(-)J/Ψat center-of-mass energies from 4.127 to 4.600 GeV are measured based on 15.6 fb-1data collected with the BESⅢ detector operating at the BEPCⅡ storage ring.Two resonant structures are observed in the line shape of the cross sections.The mass and width of the first structure are measured to be(4225.3±2.3±21.5)MeV and(72.9±6.1±30.8)MeV,respectively.They are consistent with those of the established Y(4230).The second structure is observed for the first time with a statistical significance greater than 8σ,denoted as Y(4500).Its mass and width are determined to be(4484.7±13.3±24.1)MeV and(111.1±30.1±15.2)MeV,respectively.The first presented uncertainties are statistical and the second ones are systematic.The product of the electronic partial width with the decay branching fractionΓ(Y(4230)→e^(+)e^(−))B(Y(4230)→K^(+)K^(−)J/Ψ)is reported.展开更多
基金supported by Royal Society grant DHFR1211068funded by UKSA+14 种基金STFCSTFC grant ST/M001083/1funded by STFC grant ST/W00089X/1supported by NERC grant NE/W003309/1(E3d)funded by NERC grant NE/V000748/1support from NERC grants NE/V015133/1,NE/R016038/1(BAS magnetometers),and grants NE/R01700X/1 and NE/R015848/1(EISCAT)supported by NERC grant NE/T000937/1NSFC grants 42174208 and 41821003supported by the Research Council of Norway grant 223252PRODEX arrangement 4000123238 from the European Space Agencysupport of the AUTUMN East-West magnetometer network by the Canadian Space Agencysupported by NASA’s Heliophysics U.S.Participating Investigator Programsupport from grant NSF AGS 2027210supported by grant Dnr:2020-00106 from the Swedish National Space Agencysupported by the German Research Foundation(DFG)under number KR 4375/2-1 within SPP"Dynamic Earth"。
文摘The joint European Space Agency and Chinese Academy of Sciences Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will explore global dynamics of the magnetosphere under varying solar wind and interplanetary magnetic field conditions,and simultaneously monitor the auroral response of the Northern Hemisphere ionosphere.Combining these large-scale responses with medium and fine-scale measurements at a variety of cadences by additional ground-based and space-based instruments will enable a much greater scientific impact beyond the original goals of the SMILE mission.Here,we describe current community efforts to prepare for SMILE,and the benefits and context various experiments that have explicitly expressed support for SMILE can offer.A dedicated group of international scientists representing many different experiment types and geographical locations,the Ground-based and Additional Science Working Group,is facilitating these efforts.Preparations include constructing an online SMILE Data Fusion Facility,the discussion of particular or special modes for experiments such as coherent and incoherent scatter radar,and the consideration of particular observing strategies and spacecraft conjunctions.We anticipate growing interest and community engagement with the SMILE mission,and we welcome novel ideas and insights from the solar-terrestrial community.
基金The project was supported by China Postdoctoral Science Foundation(No.2003034452)National Natural Science Foundation of China(No.50371027).
文摘A novel process for synthesizing nano-ceramics powders, named mechanical & therm al activation processing, is discussed in the present paper. It is a processing based on thermal activation in liquid phase (molten salt) after mechanical activ ation. The nanometer-sized TiC particles (15-20nm) have been synthesized by the method, and analyzed by X-ray diffraction (XRD), transmission electron microscop e (TEM), scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) sp ectroscopy. An interface interaction between liquid (molten salt) and solid (fin al product particles) phases plays a dominating role for the control of product particles size. The mechanism for the formation of nanometer-sized TiC particles has been discussed.
基金supported in part by National Key R&D Program of China under Contracts Nos.2020YFA0406300,2020YFA0406400National Natural Science Foundation of China(NSFC)under Contracts Nos.12150004,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017+17 种基金the Program of Science and Technology Development Plan of Jilin Province of China under Contract Nos.20210508047RQ and 20230101021JCthe Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No.U1832207CAS Key Research Program of Frontier Sciences under Contracts Nos.QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement under Contract No.894790German Research Foundation DFG under Contracts Nos.455635585,Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey under Contract No.DPT2006K-120470National Research Foundation of Korea under Contract No.NRF-2022R1A2C1092335National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand under Contract No.B16F640076Polish National Science Centre under Contract No.2019/35/O/ST2/02907The Swedish Research CouncilU.S.Department of Energy under Contract No.DE-FG02-05ER41374。
文摘The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the statistical uncertainty is negligible.Meanwhile,the numbers ofψ(3686)events collected during the 2009 and 2012run periods are updated to be(107.7±0.6)×10~6 and(345.4±2.6)×10~6,respectively.Both numbers are consistent with the previous measurements within one standard deviation.The total number ofψ(3686)events in the three data samples is(2712.4±14.3)×10~6.
基金Supported in part by the National Key R&D Program of China(2020YFA0406300,2020YFA0406400)the National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12105276,12122509,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832103,U1832207,U2032111)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(455635585),Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.
基金Supported in part by National Key R&D Program of China under Contracts Nos.Supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(11975118,11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12061131003,12075252,12192260,12192261,12192262,12192263,12192264,12192265)+19 种基金the Natural Science Foundation of Hunan Province of China(2019JJ30019)the Science and Technology Innovation Program of Hunan Province(2020RC3054)the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union Horizon 2020 research and innovation programme under Contract No.Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(43159800)Collaborative Research Center CRC 1044,FOR 2359,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374,DE-SC-0012069)。
文摘Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESⅢdetector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 fb^(-1),the process e^(+)e^(-)→pppñπ+c.c.is observed for the first time with a statistical significance of 11.5σ.The average Born cross sections in the energy ranges of(4.160,4.380)GeV,(4.400,4.600)GeV and(4.610,4.700)GeV are measured to be(21.5±5.7±1.2)fb,(46.3±10.6±2.5)fb and(59.0±9.4±3.2)fb,respectively,where the first uncertainties are statistical and the second are systematic.The line shapes of the pñ and ppπ^(-)invariant mass spectra are consistent with phase space distributions,indicating that no hexaquark or di-baryon state is observed.
基金Supported in part by National Key R&D Program of China(Grant Nos.2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC)(Grant Nos.11635010,11735014,11805086,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265)+18 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(Grant No.U1832207)the CAS Center for Excellence in Particle Physics(CCEPP)100 Talents Program of CASFundamental Research Funds for the Central Universities,Lanzhou University,University of Chinese Academy of SciencesThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyERC(Grant No.758462)European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(Grant No.894790)German Research Foundation DFG(Grant No.443159800),Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(Grant No.DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(Grant No.B16F640076)Olle Engkvist Foundation(Grant No.200-0605)STFC(United Kingdom)Suranaree University of Technology(SUT),Thailand Science Research and Innovation(TSRI),and National Science Research and Innovation Fund(NSRF)(Grant No.160355)The Royal Society,UK(Grant Nos.DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(Grant No.DE-FG02-05ER41374)。
文摘We report a search for a heavier partner of the recently observed Z_(cs)(3985)^(-) state,denoted as Z_(cs)^('-),in the process e^(+)e^(−)→K^(+)D_(s)^(∗−) D^(∗0 )+ c.c.,based on e^(*)e^(-)collision data collected at the center-of-mass energies of √s=4.661,4.682 and 4.699 GeV with the BESIII detector.The Z_(cs)^('-) is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark.A partial-reconstruction technique is used to isolate K^(+)recoil-mass spectra,which are probed for a potential contribution from Z_(cs)^('-)→D_(s)^(∗−) D^(∗0 )+ c.c.We find an excess of Z_(cs)^('-)→D_(s)^(*-)-D^(*0)(c.c.)candidates with a significance of 2.1o,after considering systematic uncertainties,at a mass of(4123.5±0.7_(sat)±4.7_(syst.))MeV/c^(2).As the data set is limited in size,the upper limits are evaluated at the 90%confidence level on the product of the Born cross sections(σ^(Borm))and the branching fraction(B)of Z_(cs)^('-)→D_(s)^(*-)-D^(*0),under different assumptions of the Z_(cs)^('-) mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV at the three center-of-mass energies.The upper limits of σ^(Born).B are found to be at the level of O(1)pb at each energy.Larger data samples are needed to confirm the Z_(cs)^('-) state and clarify its nature in the coming years.
基金supported in part by National Key Research and Development Program of China(2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC,11975118,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265,12061131003)+18 种基金the Natural Science Foundation of Hunan Province of China(2019JJ30019)the Science and Technology Innovation Program of Hunan Province(2020RC3054)the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and Cosmology,ERC(758462)European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(443159800)Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources and Institutional Development,Research and Innovation(B16F640076)STFC(United Kingdom)Suranaree University of Technology(SUT),Thailand Science Research and Innovation(TSRI),and National Science Research and Innovation Fund(NSRF,160355)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using(448.1±2.9)×10^(6)ψ(3686)for the weak baryonic decayψ(3686)→Λc+∑-+c.c..The analysis procedure is optimized using a blinded method.No significant signal is observed,and the upper limit on the branching fraction(B)ofψ(3686)→Λc+∑-+c.c.is set as 1.4×10^(-5)at the 90%confidence level.
基金Supported in part by National Key R&D Program of China(2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC)(11635010,11735014,11805086,11835012,11935015,11935016,11935018,11975011,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265)+20 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)the CAS Center for Excellence in Particle Physics(CCEPP)100 Talents Program of CASFundamental Research Funds for the Central Universities,Lanzhou University,University of Chinese Academy of SciencesThe Institute of Nuclear and Particle Physics(INPAC)Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)German Research Foundation DFG(443159800)Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(B16F640076STFC)(United Kingdom)Suranaree University of Technology(SUT)Thailand Science Research and Innovation(TSRI)National Science Research and Innovation Fund(NSRF)(160355)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DEFG02-05ER41374)。
文摘Using electron-positron annihilation data samples corresponding to an integrated luminosity of 4.5 fb-1,collected by the BESⅢdetector in the energy region between 4599.53 MeV and 4698.82 MeV,we report the first observations of the Cabibbo-suppressed decaysΛ_(c)^(+)→nπ^(+)π^(0),Λ_(c)^(+)→nπ^(+)π^(-)π^(+),and the Cabibbo-favored decayΛ_(c)^(+)→nK^(-)π^(+)π^(+)with statistical significances of 7.9σ,7.8σ,and>10σ,respectively.The branching fractions of these decays are measured to be B(Λ_(c)^(+)→nπ^(+)π^(0))=(0.64±0.09±0.02)%,B(Λ_(c)^(+)→nπ^(+)π^(-)π^(+))=(0.45±0.07±0.03)%,and B(Λ_(c)^(+)→nK^(-)π^(+)π^(+))=(1.90±0.08±0.09)%,where the first uncertainties are statistical and the second are systematic.We find that the branching fraction of the decayΛ_(c)^(+)→nπ^(+)π^(0)is about one order of magnitude higher than that ofΛ_(c)^(+)→nπ^(+).
基金Supported in part by National Key Research and Development Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012)+12 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CAS,INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology,ERC(758462)European Union Horizon 2020 research and innovation programme(Marie Sklodowska-Curie grant agreement No 894790)German Research Foundation DFG(443159800)Collaborative Research Center CRC 1044,FOR 2359,FOR 2359,GRK 214Istituto Nazionale di Fisica Nucleare,Italy,Ministry of Development of Turkey(DPT2006K-120470)National Science and Technology fund,Olle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research Council,U.S.Department of Energy(DE-FG02-05ER41374,DE-SC-0012069)。
文摘During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the study of excited charmonium and charmoniumlike states.By analyzing the di-muon process e^(+)e^(-)→(γISR=FSR)μ^(+)μ^(-),we measure the center-of-mass energies of the data samples with a precision of 0.6 MeV.Through a run-by-run study,we find that the center-of-mass energies were stable throughout most of the data-collection period.
基金Supported in part by National Key Basic Research Program of China(2015CB856700)National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U 1732263,U 1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSWSLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)German Research Foundation DFG under Contracts Nos.Collaborative Research Center CRC 1044,FOR 2359Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development o f Turkey(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DEFG02-05ER41374,DE-SC-0012069)。
文摘Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,namely Bhabha scattering,dimuon production and generic hadronic events with charged particles.The combined efficiency of all active triggers approaches 100%in most cases,with uncertainties small enough not to affect most physics analyses.
基金Supported in part by National Key R&D Program of China(2020YFA0406300, 2020YFA0406400)National Natural Science Foundation of China(NSFC)(11625523, 11635010, 11735014, 11822506, 11835012, 11935015, 11935016, 11935018, 11961141012, 12022510, 12025502, 12035009, 12035013,12061131003,12075252)+16 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263, U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union Horizon 2020 research and innovation programme Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(443159800), Collaborative Research Center CRC 1044, FOR 2359, GRK 214Istituto Nazionale di Fisica Nucleare, ItalyMinistry of Development of Turkey under Contract No. DPT2006K-120470National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society, UK(DH140054, DH160214)The Swedish Research CouncilU. S. Department of Energy(DE-FG02-05ER41374, DE-SC-0012069)
文摘Using inclusive decays of J/ψ aprecise determination of the number of J/ψ events collected with the BESIII detector was performed.For the two data sets taken in 2009 and 2012,the numbers of J/ψ events were recalculated to be(224.0±1.3)×10^(6) and(1088.5±4.4)×10^(6),respectively;these numbers are in good agreement with the previous measurements. For the J/ψ sample taken in 2017-2019,the number of events was determined to be(8774.0±39.4)×10^(6).The total number of J/ψ events collected with the BESIII detector was determined to be(10087±44)×10^(6),where the uncertainty is dominated by systematic effects,and the statistical uncertainty is negligible.
基金supported by the National Key R&D Program of China(grant number 2019YFB1309702)the National Natural Science Foundation(grant number 61520106011)。
文摘In vitro three-dimensional(3D)cellular models with native tissue-like architectures and functions have potential as alternatives to human tissues in regenerative medicine and drug discovery.However,it is difficult to replicate liver constructs that mimic in vivo microenvironments using current approaches in tissue engineering because of the vessel-embedded 3D structure and complex cell distribution of the liver.This paper reports a pulsed microflow-based on-chip 3D assembly method to construct 3D liver lobule-like models that replicate the spatial structure and functions of the liver lobule.The heterogeneous cell-laden assembly units with hierarchical cell distribution are fabricated through multistep photopatterning of different cell-laden hydrogels.Through fluid force interaction by pulsed microflow,the hierarchical assembly units are driven to a stack,layer by layer,and thus spatially assemble into 3D cellular models in the closed liquid chamber of the assembly chip.The 3D models with liver lobule-like hexagonal morphology and radial cell distribution allow the dynamic perfusion culture to maintain high cell viability and functional expression during long-term culture in vitro.These results demonstrate that the fabricated 3D liver lobule-like models are promising for drug testing and the study of individual diagnoses and treatments.
基金Supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12061131003)+16 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union Horizon 2020 research and innovation programme(Marie Sklodowska-Curie grant agreement No 894790)German Research Foundation DFG(443159800),Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374,DE-SC-0012069)。
文摘The integrated luminosities of data samples collected in the BESⅢ experiment in 2016-2017 at centerof-mass energies between 4.19 and 4.28 GeV are measured with a precision better than 1% by analyzing large-angle Bhabha scattering events.The integrated luminosities of old datasets collected in 2010-2014 are updated by considering corrections related to detector performance,offsetting the effect of newly discovered readout errors in the electromagnetic calorimeter,which can haphazardly occur.
基金Supported in part by National Key R&D Program of China(2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC)(11635010,11735014,11805086,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265)+17 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASFundamental Research Funds for the Central Universities,Lanzhou University,University of Chinese Academy of SciencesThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(443159800),Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(B16F640076)STFC(United Kingdom)Suranaree University of Technology(SUT),Thailand Science Research and Innovation(TSRI),and National Science Research and Innovation Fund(NSRF)(160355)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘From December 2019 to June 2021,the BESⅢ experiment collected approximately 5.85 fb^(−1) of data at center-of-mass energies between 4.61 and 4.95 GeV.This is the highest collision energy BEPCⅡ has reached to date.The accumulated e^(+)e^(−) annihilation data samples are useful for studying charmonium(-like)states and charmed-hadron decays.By adopting a novel method of analyzing the production of A_(c)^(+)A_(c)^(-) pairs in e^(+)e^(−) annihilation,the center-of-mass energies are measured with a precision of 0.6 MeV.Integrated luminosities are measured with a precision of better than 1% by analyzing the events of large-angle Bhabha scattering.These measurements provide important inputs to analyses based on these data samples.
基金Supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)under Contracts Nos.(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12061131003)+16 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos.(U1732263,U1832207)CAS Key Research Program of Frontier Sciences under Contract No.(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC under Contract No.(758462)European Union Horizon 2020 research and innovation programme under Contract No.Marie Sklodowska-Curie grant agreement No(894790)German Research Foundation DFG under Contracts Nos.(443159800),Collaborative Research Center CRC 1044,FOR 2359,GRK 214Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey under Contract No.(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation under Contract No.(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)under Contract No.(2016.0157)The Royal Society,UK under Contracts Nos.(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy under Contracts Nos.(DE-FG02-05ER41374,DE-SC-001206)。
文摘The cross sections of e^(+)e^(-)→K^(+)K^(-)J/Ψat center-of-mass energies from 4.127 to 4.600 GeV are measured based on 15.6 fb-1data collected with the BESⅢ detector operating at the BEPCⅡ storage ring.Two resonant structures are observed in the line shape of the cross sections.The mass and width of the first structure are measured to be(4225.3±2.3±21.5)MeV and(72.9±6.1±30.8)MeV,respectively.They are consistent with those of the established Y(4230).The second structure is observed for the first time with a statistical significance greater than 8σ,denoted as Y(4500).Its mass and width are determined to be(4484.7±13.3±24.1)MeV and(111.1±30.1±15.2)MeV,respectively.The first presented uncertainties are statistical and the second ones are systematic.The product of the electronic partial width with the decay branching fractionΓ(Y(4230)→e^(+)e^(−))B(Y(4230)→K^(+)K^(−)J/Ψ)is reported.