This paper presents an adapted stabilisation method for the equal-order mixed scheme of finite elements on convex polygonal meshes to analyse the high velocity and pressure gradient of incompressible fluid flows that ...This paper presents an adapted stabilisation method for the equal-order mixed scheme of finite elements on convex polygonal meshes to analyse the high velocity and pressure gradient of incompressible fluid flows that are governed by Stokes equations system.This technique is constructed by a local pressure projection which is extremely simple,yet effective,to eliminate the poor or even non-convergence as well as the instability of equal-order mixed polygonal technique.In this research,some numerical examples of incompressible Stokes fluid flow that is coded and programmed by MATLAB will be presented to examine the effectiveness of the proposed stabilised method.展开更多
This paper investigates a polygonal finite element(PFE)to solve a two-dimensional(2D)incompressible steady fluid problem in a cavity square.It is a well-known standard benchmark(i.e.,lid-driven cavity flow)-to evaluat...This paper investigates a polygonal finite element(PFE)to solve a two-dimensional(2D)incompressible steady fluid problem in a cavity square.It is a well-known standard benchmark(i.e.,lid-driven cavity flow)-to evaluate the numerical methods in solving fluid problems controlled by the Navier-Stokes(N-S)equation system.The approximation solutions provided in this research are based on our developed equal-order mixed PFE,called Pe1Pe1.It is an exciting development based on constructing the mixed scheme method of two equal-order discretisation spaces for both fluid pressure and velocity fields of flows and our proposed stabilisation technique.In this research,to handle the nonlinear problem of N-S,the Picard iteration scheme is applied.Our proposed method’s performance and convergence are validated by several simulations coded by commercial software,i.e.,MATLAB.For this research,the benchmark is executed with variousReynolds numbers up to the maximum Re=1000.All results then numerously compared to available sources in the literature.展开更多
基金The authors would like to present our gratitude to the Flemish Government financially supporting for the VLIR-OUS TEAM Project,VN2017TEA454A103‘An innovative solution to protect Vietnamese coastal riverbanks from floods and erosion’.
文摘This paper presents an adapted stabilisation method for the equal-order mixed scheme of finite elements on convex polygonal meshes to analyse the high velocity and pressure gradient of incompressible fluid flows that are governed by Stokes equations system.This technique is constructed by a local pressure projection which is extremely simple,yet effective,to eliminate the poor or even non-convergence as well as the instability of equal-order mixed polygonal technique.In this research,some numerical examples of incompressible Stokes fluid flow that is coded and programmed by MATLAB will be presented to examine the effectiveness of the proposed stabilised method.
基金This work was supported by the VLIR-UOS TEAM Project,VN2017TEA454A 103,‘An innovative solution to protect Vietnamese coastal riverbanks from floods and erosion’funded by the Flemish Government.
文摘This paper investigates a polygonal finite element(PFE)to solve a two-dimensional(2D)incompressible steady fluid problem in a cavity square.It is a well-known standard benchmark(i.e.,lid-driven cavity flow)-to evaluate the numerical methods in solving fluid problems controlled by the Navier-Stokes(N-S)equation system.The approximation solutions provided in this research are based on our developed equal-order mixed PFE,called Pe1Pe1.It is an exciting development based on constructing the mixed scheme method of two equal-order discretisation spaces for both fluid pressure and velocity fields of flows and our proposed stabilisation technique.In this research,to handle the nonlinear problem of N-S,the Picard iteration scheme is applied.Our proposed method’s performance and convergence are validated by several simulations coded by commercial software,i.e.,MATLAB.For this research,the benchmark is executed with variousReynolds numbers up to the maximum Re=1000.All results then numerously compared to available sources in the literature.