Single pulse excited ultrasonic guided wave surfers high attenuation during the propagation in long bones.This results in small amplitude and low signal-to-noise ratio(SNR)of measured signals.Thus,the Barker code ex...Single pulse excited ultrasonic guided wave surfers high attenuation during the propagation in long bones.This results in small amplitude and low signal-to-noise ratio(SNR)of measured signals.Thus,the Barker code excitation is introduced into long bone detection to improve the quality of received signals,due to its efficiency in increasing amplitude and SNR.Both simulation and in vitro experiment were performed,and the results were decoded by the weighted match filter(WMF) and the finite impulse response- least squares inverse filter(FIRLSIF),respectively.The comparison between the results of Barker code excitation and sine pulse excitation was presented.For 13-bit Barker code excitation,WMF produced 13 times larger amplitude than sine pulse excitation,while FIR-LSIF achieved higher peak-sidelobe-level(PSL) of -63.59 dB and better performance in noise suppression.The results show that the Barker code excited guided waves have the potential to be applied to the long bone detection.展开更多
In this study, ultrasonic backscattering signals in cancellous bones were obtained by finite difference time domain (FDTD) simulations, and the effect of trabecular material properties on these signals was analyzed....In this study, ultrasonic backscattering signals in cancellous bones were obtained by finite difference time domain (FDTD) simulations, and the effect of trabecular material properties on these signals was analyzed. The backscatter coefficient (BSC) and integrated backscatter coefficient (IBC) were numerically investigated for varying trabecular bone material properties, including density, Lame coefficients, viscosities, and resistance coefficients. The results show that the BSC is a complex function of trabecular bone density, and the IBC increases as density increases. The BSC and IBC increase with the first and second Lame coefficients. While not very sensitive to the second viscosity of the trabeculae, the BSC and IBC decrease as the first viscosity and resistance coefficients increase. The results demonstrate that, in addition to bone mineral density (BMD) and microarchitecture, trabecular material properties significantly influence ultrasonic backseattering signals in cancellous bones. This research furthers the understanding of ultrasonic backscattering in cancellous bones and the characterization of cancellous bone status.展开更多
In the application of cancellous bone ultrasound diagnosis based on backscattering method, it is of great importance to estimate fast and accurately whether the valid backscattering signal exists in the received signa...In the application of cancellous bone ultrasound diagnosis based on backscattering method, it is of great importance to estimate fast and accurately whether the valid backscattering signal exists in the received signal. We propose a fast estimation method based on spectrum entropy method. With 984 records of adult calcaneus clinical data, we estimate the validity of the backscatter signal using this method. The results of the proposed method and the results of experience-base judgement were compared and analyzed. And two key parameters, the signal range length and the segment number of the spectrum entropy, were analyzed. The results show when the signal range length is 13 I^s and the segment number is 15 20, this method can get the best result (accuracy〉95%, sensitivity〉99%, specificity〉87%), while taking little calculation time (1.5 ms). Therefore, this spectrum entropy method can satisfy the accuracy and real-time requirements in the ultrasonic estimation for cancellous bone.展开更多
Using ultrasonic guided waves to assess long bone fractures and fracture healing has become a promising diagnostic issue. But the multimode overlap of the guided waves challenges the quantitative evaluation and clinic...Using ultrasonic guided waves to assess long bone fractures and fracture healing has become a promising diagnostic issue. But the multimode overlap of the guided waves challenges the quantitative evaluation and clinical application. In the preformed study, in order to simplify the signal interpretation, the low-frequency sinusoidial signals were used to only excite SO and A0 modes in fractured long bones. The amplitudes of SO and A0 modes were numerically analyzed with variation in crack width and fracture angle. Numerical simulation, based on the two-dimension finite-difference time-domain (2D-FDTD) reveals that both SO and A0 amplitudes decrease with the fracture widening. However, the increase in fracture angle gradually enhances the A0 amplitude, while with respect to the SO mode, its amplitude shows a non-monotonic trend to the variation in fracture angle with a turning point around 45°. The amplitude ratio between S0 and A0 can reflect the variations in crack width and fracture angles. The simulation illustrates that ultrasonic guided SO and A0 modes are sensitive to the degree of both vertical and oblique fractures in the long cortical bone. These findings may be helpful for fractures diagnosis and healing evaluation of the long bone.展开更多
Evaluating bone regularly is important to prevent and control the disease of osteoporosis. Impact of osteoporosis on ultrasonic guided waves propagating in human long bones is studied in this paper. Multi-scale wavele...Evaluating bone regularly is important to prevent and control the disease of osteoporosis. Impact of osteoporosis on ultrasonic guided waves propagating in human long bones is studied in this paper. Multi-scale wavelet transform is proposed to process the received guided waves, and by analyzing energy changes in detail components of high order wavelet at different propagating distance to assess if osteoporosis happened. The guided waves signals are collected from the tibias of 13 volunteers. Based on the analysis of multi-scale wavelet transform, the high order detail components d6 and d5 changed dramatically with the propagation of ultrasonic guided waves along long bones, which means these 7 volunteers are diagnosed with osteoporosis. Compared with X-ray diagnosis, the effectiveness of this method can reach 92.3% in 13 volunteers. This suggests the multi-scale wavelet transform method is potential in ultrasonic assessment of bone quality.展开更多
The quadratic transformation method is proposed to estimate the trabecular spac- ing (Tb.Sp), an important index for osteoporosis diagnosis. The performance of this algorithm was investigated by scatter model, two-d...The quadratic transformation method is proposed to estimate the trabecular spac- ing (Tb.Sp), an important index for osteoporosis diagnosis. The performance of this algorithm was investigated by scatter model, two-dimension finite difference time domain (2D-FDTD) simulation and in vitro experiments of bovine cancellous bone specimens. Comparing with the other four methods autoregressive cepstrum (AR), adaptive filter- autoregressive cepstral (AFAR), inverse filter-autoregressive eepstrum (InvAR), and simplified inverse filter tracking (SIFT), quadratic transformation is much more stable and accurate. The results demonstrated that quadratic transformation is a great algorithm for Tb.SD estimation.展开更多
Aiming at facilitating Lamb wave signal analysis and mode characterization,an ultrasonic-Lamb wave niultimodal separation method combining short-time Fourier transform(STFT)and independent component analysis(ICA)was p...Aiming at facilitating Lamb wave signal analysis and mode characterization,an ultrasonic-Lamb wave niultimodal separation method combining short-time Fourier transform(STFT)and independent component analysis(ICA)was proposed.Temporal signals were projected into the time-frequency domain through STFT.Assuming that the energy trajectory of each Lamb mode is indepenclent in the time-frequency domain,ICA method was then applied to separate tlie superposed modes.The group velocity curve of each mode was extracted according to its time-frequency energy trajectory,based on which the plate thickness can be further estimated.The finite-difference time-domain(FDTD)simulated signals and experimental signals for a 1 nmi-thick steel plate were used to validate the performance of the proposed method.The three fundainental Lamb modes,A0,SO and A1 modes were separated.The average errors of group velocity estimation in the simulation and experiment were about 1.5%and 2.0%,with that of plate thickness estimation being 0.3%and 2.0%approximately.The simulated results indicate that,when the signal-to-noise ratio(SNR)is larger than 0 dB,the ICA method in the time-frequency domain can be used for ultrasonic Lamb wave multimodal separation,group velocity extraction and plate thickness estimation.展开更多
基金supported by the NSFC(11174060,11327405)the Science and Technology Support Program of Shanghai(13441901900)the Ph.D.Programs Foundation of the Ministry of Education of China(20110071130004,20130071110020)
文摘Single pulse excited ultrasonic guided wave surfers high attenuation during the propagation in long bones.This results in small amplitude and low signal-to-noise ratio(SNR)of measured signals.Thus,the Barker code excitation is introduced into long bone detection to improve the quality of received signals,due to its efficiency in increasing amplitude and SNR.Both simulation and in vitro experiment were performed,and the results were decoded by the weighted match filter(WMF) and the finite impulse response- least squares inverse filter(FIRLSIF),respectively.The comparison between the results of Barker code excitation and sine pulse excitation was presented.For 13-bit Barker code excitation,WMF produced 13 times larger amplitude than sine pulse excitation,while FIR-LSIF achieved higher peak-sidelobe-level(PSL) of -63.59 dB and better performance in noise suppression.The results show that the Barker code excited guided waves have the potential to be applied to the long bone detection.
基金supported by the National Natural Science Foundation of China(11174060,11327405)the Ph.D.Programs Foundation of the Ministry of Education of China(20110071130004,20130071110020)+1 种基金the Science and Technology Support Program of Shanghai(13441901900)the Program for New Century Excellent Talents in University(NCET-10-0349)
文摘In this study, ultrasonic backscattering signals in cancellous bones were obtained by finite difference time domain (FDTD) simulations, and the effect of trabecular material properties on these signals was analyzed. The backscatter coefficient (BSC) and integrated backscatter coefficient (IBC) were numerically investigated for varying trabecular bone material properties, including density, Lame coefficients, viscosities, and resistance coefficients. The results show that the BSC is a complex function of trabecular bone density, and the IBC increases as density increases. The BSC and IBC increase with the first and second Lame coefficients. While not very sensitive to the second viscosity of the trabeculae, the BSC and IBC decrease as the first viscosity and resistance coefficients increase. The results demonstrate that, in addition to bone mineral density (BMD) and microarchitecture, trabecular material properties significantly influence ultrasonic backseattering signals in cancellous bones. This research furthers the understanding of ultrasonic backscattering in cancellous bones and the characterization of cancellous bone status.
基金supported by the National Natural Science Foundation of China(11327405,11525416,11604054,11504057)
文摘In the application of cancellous bone ultrasound diagnosis based on backscattering method, it is of great importance to estimate fast and accurately whether the valid backscattering signal exists in the received signal. We propose a fast estimation method based on spectrum entropy method. With 984 records of adult calcaneus clinical data, we estimate the validity of the backscatter signal using this method. The results of the proposed method and the results of experience-base judgement were compared and analyzed. And two key parameters, the signal range length and the segment number of the spectrum entropy, were analyzed. The results show when the signal range length is 13 I^s and the segment number is 15 20, this method can get the best result (accuracy〉95%, sensitivity〉99%, specificity〉87%), while taking little calculation time (1.5 ms). Therefore, this spectrum entropy method can satisfy the accuracy and real-time requirements in the ultrasonic estimation for cancellous bone.
基金supported by the National Natural Science Foundation of China(11174060,11327405,11304043)the Science and Technology Support Program of Shanghai(13441901900)+1 种基金the Ph.D.Programs Foundation of the Ministry of Education of China(20130071110020)China Postdoctoral Science Foundation(2012M520826)
文摘Using ultrasonic guided waves to assess long bone fractures and fracture healing has become a promising diagnostic issue. But the multimode overlap of the guided waves challenges the quantitative evaluation and clinical application. In the preformed study, in order to simplify the signal interpretation, the low-frequency sinusoidial signals were used to only excite SO and A0 modes in fractured long bones. The amplitudes of SO and A0 modes were numerically analyzed with variation in crack width and fracture angle. Numerical simulation, based on the two-dimension finite-difference time-domain (2D-FDTD) reveals that both SO and A0 amplitudes decrease with the fracture widening. However, the increase in fracture angle gradually enhances the A0 amplitude, while with respect to the SO mode, its amplitude shows a non-monotonic trend to the variation in fracture angle with a turning point around 45°. The amplitude ratio between S0 and A0 can reflect the variations in crack width and fracture angles. The simulation illustrates that ultrasonic guided SO and A0 modes are sensitive to the degree of both vertical and oblique fractures in the long cortical bone. These findings may be helpful for fractures diagnosis and healing evaluation of the long bone.
基金supported by NSFC(11404207,11327405,11525416)Natural Science Foundation of Shanghai(14ZR1417500)Shanghai Colleges and Universities Young Teachers Training Funding Scheme(ZZsd115110,ZZsd115106)
文摘Evaluating bone regularly is important to prevent and control the disease of osteoporosis. Impact of osteoporosis on ultrasonic guided waves propagating in human long bones is studied in this paper. Multi-scale wavelet transform is proposed to process the received guided waves, and by analyzing energy changes in detail components of high order wavelet at different propagating distance to assess if osteoporosis happened. The guided waves signals are collected from the tibias of 13 volunteers. Based on the analysis of multi-scale wavelet transform, the high order detail components d6 and d5 changed dramatically with the propagation of ultrasonic guided waves along long bones, which means these 7 volunteers are diagnosed with osteoporosis. Compared with X-ray diagnosis, the effectiveness of this method can reach 92.3% in 13 volunteers. This suggests the multi-scale wavelet transform method is potential in ultrasonic assessment of bone quality.
基金supported by NSFC(11174060,11304043,11327405)the Ph.D.Programs Foundation of the Ministry of Education of China(20130071110020)the Key Science and Technology Program of Shanghai(13441901900)
文摘The quadratic transformation method is proposed to estimate the trabecular spac- ing (Tb.Sp), an important index for osteoporosis diagnosis. The performance of this algorithm was investigated by scatter model, two-dimension finite difference time domain (2D-FDTD) simulation and in vitro experiments of bovine cancellous bone specimens. Comparing with the other four methods autoregressive cepstrum (AR), adaptive filter- autoregressive cepstral (AFAR), inverse filter-autoregressive eepstrum (InvAR), and simplified inverse filter tracking (SIFT), quadratic transformation is much more stable and accurate. The results demonstrated that quadratic transformation is a great algorithm for Tb.SD estimation.
基金the National Natural Science Foundation of China(11974081,12004079)the International Cooperation Project of Shanghai Science and Technology Commission(17510710700)+3 种基金the Independent Project of State Key Laboratory of ASIC and System(2021GF002)the Program of Shanghai Academic Research Leader(19XD1400500)the Shanghai Rising Star Program(20QC1400200)the Natural Science Foundation of Shanghai(19ZR1402700).
文摘Aiming at facilitating Lamb wave signal analysis and mode characterization,an ultrasonic-Lamb wave niultimodal separation method combining short-time Fourier transform(STFT)and independent component analysis(ICA)was proposed.Temporal signals were projected into the time-frequency domain through STFT.Assuming that the energy trajectory of each Lamb mode is indepenclent in the time-frequency domain,ICA method was then applied to separate tlie superposed modes.The group velocity curve of each mode was extracted according to its time-frequency energy trajectory,based on which the plate thickness can be further estimated.The finite-difference time-domain(FDTD)simulated signals and experimental signals for a 1 nmi-thick steel plate were used to validate the performance of the proposed method.The three fundainental Lamb modes,A0,SO and A1 modes were separated.The average errors of group velocity estimation in the simulation and experiment were about 1.5%and 2.0%,with that of plate thickness estimation being 0.3%and 2.0%approximately.The simulated results indicate that,when the signal-to-noise ratio(SNR)is larger than 0 dB,the ICA method in the time-frequency domain can be used for ultrasonic Lamb wave multimodal separation,group velocity extraction and plate thickness estimation.