期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于大脑情感学习模型和自适应遗传算法的混沌时间序列预测 被引量:9
1
作者 梅英 谭冠政 +1 位作者 刘振焘 武鹤 《物理学报》 SCIE EI CAS CSCD 北大核心 2018年第8期21-32,共12页
针对传统神经网络预测精度不高、收敛速度慢的问题,提出一种基于大脑情感学习模型和自适应遗传算法的混沌时间序列预测方法.大脑情感学习模型模拟了哺乳动物大脑中杏仁体和眶额皮质之间的情感学习机制,具有计算复杂度低、运算速度快的特... 针对传统神经网络预测精度不高、收敛速度慢的问题,提出一种基于大脑情感学习模型和自适应遗传算法的混沌时间序列预测方法.大脑情感学习模型模拟了哺乳动物大脑中杏仁体和眶额皮质之间的情感学习机制,具有计算复杂度低、运算速度快的特点,因此可以大大提高混沌预测的快速性.为了进一步提高大脑情感学习模型的预测精度,采用自适应遗传算法优化其参数,将待优化的权值与阈值分布在染色体基因序列上,用适应度函数选出最佳参数,从而增强了模型的逼近能力.基于Lorenz混沌时间序列和实际地磁Dst指数序列的预测结果表明,本文方法较其他传统方法在预测精度、运算速度和稳定性上均具有明显优势. 展开更多
关键词 混沌时间序列 预测 大脑情感学习 自适应遗传算法
下载PDF
Ant Colony System Algorithm for Real-Time Globally Optimal Path Planning of Mobile Robots 被引量:26
2
作者 tan guan-zheng HE Huan SLOMAN Aaron 《自动化学报》 EI CSCD 北大核心 2007年第3期279-285,共7页
为活动机器人计划的即时全球性最佳的路径的一个新奇方法基于蚂蚁殖民地系统(交流) 被建议算法。这个方法包括三步:第一步正在利用 MAKLINK 图理论建立活动机器人的空间模型,第二步正在利用 Dijkstra 算法发现一条非最优的没有碰撞的... 为活动机器人计划的即时全球性最佳的路径的一个新奇方法基于蚂蚁殖民地系统(交流) 被建议算法。这个方法包括三步:第一步正在利用 MAKLINK 图理论建立活动机器人的空间模型,第二步正在利用 Dijkstra 算法发现一条非最优的没有碰撞的路径,并且第三步正在利用 ACS 算法优化非最优的路径的地点以便产生全球性最佳的路径。建议方法是有效的并且能在即时路径被使用活动机器人计划的计算机模拟实验表演的结果。建议方法比与优秀人材模型一起基于基因算法计划方法的路径处于集中速度,答案变化,动态集中行为,和计算效率有更好的性能,这被验证了。 展开更多
关键词 蚁群系统 运算法则 自动化系统 计算机技术
下载PDF
A decision hyper plane heuristic based artificial immune network classification algorithm 被引量:4
3
作者 DENG Ze-lin tan guan-zheng +1 位作者 HE Pei YE Ji-xiang 《Journal of Central South University》 SCIE EI CAS 2013年第7期1852-1860,共9页
Most of the developed immune based classifiers generate antibodies randomly, which has negative effect on the classification performance. In order to guide the antibody generation effectively, a decision hyper plane h... Most of the developed immune based classifiers generate antibodies randomly, which has negative effect on the classification performance. In order to guide the antibody generation effectively, a decision hyper plane heuristic based artificial immune network classification algorithm (DHPA1NC) is proposed. DHPAINC taboos the inner regions of the class domain, thus, the antibody generation is limited near the class domain boundary. Then, the antibodies are evaluated by their recognition abilities, and the antibodies of low recognition abilities are removed to avoid over-fitting. Finally, the high quality antibodies tend to be stable in the immune network. The algorithm was applied to two simulated datasets classification, and the results show that the decision hyper planes determined by the antibodies fit the class domain boundaries well. Moreover, the algorithm was applied to UCI datasets classification and emotional speech recognition, and the results show that the algorithm has good performance, which means that DHPAINC is a promising classifier. 展开更多
关键词 artificial immune network decision hyper plane recognition ability CLASSIFICATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部