In China′s Loess Plateau area, gully head is the most active zone of a drainage system in gully areas. The differentiation of loess gully head follows geospatial patterns and reflects the process of the loess landfor...In China′s Loess Plateau area, gully head is the most active zone of a drainage system in gully areas. The differentiation of loess gully head follows geospatial patterns and reflects the process of the loess landform development and evolution of its drainage system to some extent. In this study, the geomorphic meaning, basic characteristics, morphological structure and the basic types of loess gully heads were systematically analysed. Then, the loess gully head′s conceptual model was established, and an extraction method based on Digital Elevation Model(DEM) for loess gully head features and elements was proposed. Through analysing the achieved statistics of loess gully head features, loess gully heads have apparently similar and different characteristics depending on the different loess landforms where they are found. The loess head characteristics reflect their growth period and evolution tendency to a certain degree, and they indirectly represent evolutionary mechanisms. In addition, the loess gully developmental stages and the evolutionary processes can be deduced by using loess gully head characteristics. This study is of great significance for development and improvement of the theoretical system for describing loess gully landforms.展开更多
In mountainous area, spatial interpolation is the traditional method to calculate air temperature by use of observed temperature data. Due to lack of sufficient observation data in mountainous areas many precise inter...In mountainous area, spatial interpolation is the traditional method to calculate air temperature by use of observed temperature data. Due to lack of sufficient observation data in mountainous areas many precise interpolation methods could give only coarse result which could not meet the demand of precision agriculture and local climate exploration. Based on DEMs of 25 m resolution, a reversed model is constructed, with which temperature is simulated to the corresponding slope unit from the solar radiation. Taking Yaoxian county as a test area, and mean monthly temperature data as basic information sources, which are collected from 15 weather stations around Yaoxian county in Shaanxi province from the year of 1970 to 2000, a simulation for the solar radiation cell by cell is completed. By simulating solar radiation at each slope and flat cell unit, the terrain revised temperature model could be realized. A comparison between the simulated temperature and the radiation temperature from TM6 thermal infrared image shows that the terrain improved model gets a finer temperature distribution at local level. The accuracy of simulated temperature in mountainous area is higher than it is in flat area.展开更多
Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) a...Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) and remote sensing imagery, combined with developed object-based methods enables automatic gully feature mapping. But still few studies have specifically focused on gully feature mapping on different scales. In this study, an object-based approach to two-level gully feature mapping, including gully-affected areas and bank gullies, was developed and tested on 1-m DEM and Worldview-3 imagery of a catchment in the Chinese Loess Plateau. The methodology includes a sequence of data preparation, image segmentation, metric calculation, and random forest based classification. The results of the two-level mapping were based on a random forest model after investigating the effects of feature selection and class-imbalance problem. Results show that the segmentation strategy adopted in this paper which considers the topographic information and optimal parameter combination can improve the segmentation results. The distribution of the gully-affected area is closely related to topographic information, however, the spectral features are more dominant for bank gully mapping. The highest overall accuracy of the gully-affected area mapping was 93.06% with four topographic features. The highest overall accuracy of bank gully mapping is 78.5% when all features are adopted. The proposed approach is a creditable option for hierarchical mapping of gully feature information, which is suitable for the application in hily Loess Plateau region.展开更多
Planation surface, a surface that is almost flat, is a kind of low-relief landforms. Planation surface is the consequence of the denudation and planation processes under a tectonic stable condition. The quantitative e...Planation surface, a surface that is almost flat, is a kind of low-relief landforms. Planation surface is the consequence of the denudation and planation processes under a tectonic stable condition. The quantitative expression of the characteristics of planation surface plays a key role in reconstructing and describing the evolutionary process of landforms. In this study, Landform Planation Index(LPI), a new terrain derivative, was proposed to quantify the characteristics of planation surface. The LPIs were calculated based on the summit surfaces formed according to the clustering results of peaks. Ten typical areas in the Ordos Platform located in the central part of the Loess Plateau of China are chosen as the test areas for investigating their planation characteristics with the LPI. The experimental results indicate that the LPI can be effectively used to quantify the characteristics of planation surfaces. In addition, the LPI can be further used to depict the patterns of spatial differentiation in the Ordos Platform. Although the present Ordos Platform area is full of the high-density gullies, its planation characteristics is found to be well preserved. Furthermore, the characteristics of the planation surfaces can also reflect the original morphology of the Ordos Platform before the loess dusts deposition process evolved in this area. The statistical results of the LPI show that there is a gradually increasing tendency along with the increasing of slope gradient of summit surface. It indicates that the characteristics of planation surfaces vary among test areas with different landforms. These findings help to deepen the understanding of planation characteristics of the loess landform and its underlying paleotopography. Results of this study can be also served as an important theoretical reference value for revealing the evolutionary process of loess landform.展开更多
This paper is a summary to introduce thehigh tower structure design. These towers areapproximately 100 m high for large rivercrossing projects on 220 kV and 500 kVdesigned by the East China Electric PowerDesign lnstit...This paper is a summary to introduce thehigh tower structure design. These towers areapproximately 100 m high for large rivercrossing projects on 220 kV and 500 kVdesigned by the East China Electric PowerDesign lnstitute (ECEPDI) since 1958.The paper also introduces thecharacteristics, technical and economicparameters of the four typical towersdesigned by ECEPDI such as the concretechimney-type tower, steel tubular tower,guyed tower and compound angle steel tower.展开更多
Digital elevation model(DEM)plays a fundamental role in the study of the earth system by expressing surface configuration,understanding surface process,and revealing surface mechanism.DEM is widely used in analysis an...Digital elevation model(DEM)plays a fundamental role in the study of the earth system by expressing surface configuration,understanding surface process,and revealing surface mechanism.DEM is widely used in analysis and modeling in the field of geoscience.However,traditional DEM has the defect of single attribute,which is difficult to support the research in earth system science oriented to geoscience process and mechanism mining.Hence,realizing the value-added data model on the basis of traditional DEM is necessary to serve digital elevation modeling and terrain analysis under the background of a new geomorphology research paradigm and earth observation technology.A theoretical framework for value-added DEM that mainly includes concept,connotation,content,and categories,is constructed in this study.The relationship between different types of value-added DEMs as well as the research significance and application category of this theoretical framework are also proposed.The following are different methods of value-added DEMs:(1)value-added methods of DEM space and time dimensions that emphasize the integration of the ground and underground as well as coupling of time and space,(2)attribute-based value-added methods composed of material(including underground,surface,and ground)and morphological properties,and(3)value-added methods of features and physical elements that consider geographical objects and landform features formed by natural processes and artificial effects.The digital terrace,slope,and watershed models are used as examples to illustrate application scenarios of the three kinds of value-added methods.This study aims to improve expression methods of DEMs under the background of new surveying and mapping technologies by adding value to the DEM at three levels of dimensions,attributes,and elements as well as support knowledge-driven digital geomorphological analysis in the era of big data.展开更多
基金Supported by the National Natural Science Foundation of China(41771415,41930102)the Priority Academic Program Development of Jiangsu Higher Education Institutions(164320H116)
基金Support by the National Natural Science Foundation of China(41930102,41771415)the Priority Academic Program Development of Jiangsu Higher Education Institutions(164320H116).
基金Under the auspices of National Youth Science Foundation of China(No.41001294)Key Project of National Natural Science Foundation of China(No.40930531)Research Fund of State Key Laboratory Resources and Environment Information System(No.2010KF0002SA)
文摘In China′s Loess Plateau area, gully head is the most active zone of a drainage system in gully areas. The differentiation of loess gully head follows geospatial patterns and reflects the process of the loess landform development and evolution of its drainage system to some extent. In this study, the geomorphic meaning, basic characteristics, morphological structure and the basic types of loess gully heads were systematically analysed. Then, the loess gully head′s conceptual model was established, and an extraction method based on Digital Elevation Model(DEM) for loess gully head features and elements was proposed. Through analysing the achieved statistics of loess gully head features, loess gully heads have apparently similar and different characteristics depending on the different loess landforms where they are found. The loess head characteristics reflect their growth period and evolution tendency to a certain degree, and they indirectly represent evolutionary mechanisms. In addition, the loess gully developmental stages and the evolutionary processes can be deduced by using loess gully head characteristics. This study is of great significance for development and improvement of the theoretical system for describing loess gully landforms.
基金National Natural Science Foundation of China, No.40671148, No.40571120 Specialized Research Fund for the Doctoral Program of Higher Education, No.20050319006 Chair Professor Foundation of Nanjing Normal University
文摘In mountainous area, spatial interpolation is the traditional method to calculate air temperature by use of observed temperature data. Due to lack of sufficient observation data in mountainous areas many precise interpolation methods could give only coarse result which could not meet the demand of precision agriculture and local climate exploration. Based on DEMs of 25 m resolution, a reversed model is constructed, with which temperature is simulated to the corresponding slope unit from the solar radiation. Taking Yaoxian county as a test area, and mean monthly temperature data as basic information sources, which are collected from 15 weather stations around Yaoxian county in Shaanxi province from the year of 1970 to 2000, a simulation for the solar radiation cell by cell is completed. By simulating solar radiation at each slope and flat cell unit, the terrain revised temperature model could be realized. A comparison between the simulated temperature and the radiation temperature from TM6 thermal infrared image shows that the terrain improved model gets a finer temperature distribution at local level. The accuracy of simulated temperature in mountainous area is higher than it is in flat area.
基金Under the auspices of Priority Academic Program Development of Jiangsu Higher Education Institutions,National Natural Science Foundation of China(No.41271438,41471316,41401440,41671389)
文摘Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) and remote sensing imagery, combined with developed object-based methods enables automatic gully feature mapping. But still few studies have specifically focused on gully feature mapping on different scales. In this study, an object-based approach to two-level gully feature mapping, including gully-affected areas and bank gullies, was developed and tested on 1-m DEM and Worldview-3 imagery of a catchment in the Chinese Loess Plateau. The methodology includes a sequence of data preparation, image segmentation, metric calculation, and random forest based classification. The results of the two-level mapping were based on a random forest model after investigating the effects of feature selection and class-imbalance problem. Results show that the segmentation strategy adopted in this paper which considers the topographic information and optimal parameter combination can improve the segmentation results. The distribution of the gully-affected area is closely related to topographic information, however, the spectral features are more dominant for bank gully mapping. The highest overall accuracy of the gully-affected area mapping was 93.06% with four topographic features. The highest overall accuracy of bank gully mapping is 78.5% when all features are adopted. The proposed approach is a creditable option for hierarchical mapping of gully feature information, which is suitable for the application in hily Loess Plateau region.
基金Under the auspices of National Natural Science Foundation of China(No.41201464,41471316)Priority Academic Program Development of Jiangsu Higher Education Institutions(No.164320H101)
文摘Planation surface, a surface that is almost flat, is a kind of low-relief landforms. Planation surface is the consequence of the denudation and planation processes under a tectonic stable condition. The quantitative expression of the characteristics of planation surface plays a key role in reconstructing and describing the evolutionary process of landforms. In this study, Landform Planation Index(LPI), a new terrain derivative, was proposed to quantify the characteristics of planation surface. The LPIs were calculated based on the summit surfaces formed according to the clustering results of peaks. Ten typical areas in the Ordos Platform located in the central part of the Loess Plateau of China are chosen as the test areas for investigating their planation characteristics with the LPI. The experimental results indicate that the LPI can be effectively used to quantify the characteristics of planation surfaces. In addition, the LPI can be further used to depict the patterns of spatial differentiation in the Ordos Platform. Although the present Ordos Platform area is full of the high-density gullies, its planation characteristics is found to be well preserved. Furthermore, the characteristics of the planation surfaces can also reflect the original morphology of the Ordos Platform before the loess dusts deposition process evolved in this area. The statistical results of the LPI show that there is a gradually increasing tendency along with the increasing of slope gradient of summit surface. It indicates that the characteristics of planation surfaces vary among test areas with different landforms. These findings help to deepen the understanding of planation characteristics of the loess landform and its underlying paleotopography. Results of this study can be also served as an important theoretical reference value for revealing the evolutionary process of loess landform.
文摘This paper is a summary to introduce thehigh tower structure design. These towers areapproximately 100 m high for large rivercrossing projects on 220 kV and 500 kVdesigned by the East China Electric PowerDesign lnstitute (ECEPDI) since 1958.The paper also introduces thecharacteristics, technical and economicparameters of the four typical towersdesigned by ECEPDI such as the concretechimney-type tower, steel tubular tower,guyed tower and compound angle steel tower.
基金National Natural Science Foundation of China,No.41930102。
文摘Digital elevation model(DEM)plays a fundamental role in the study of the earth system by expressing surface configuration,understanding surface process,and revealing surface mechanism.DEM is widely used in analysis and modeling in the field of geoscience.However,traditional DEM has the defect of single attribute,which is difficult to support the research in earth system science oriented to geoscience process and mechanism mining.Hence,realizing the value-added data model on the basis of traditional DEM is necessary to serve digital elevation modeling and terrain analysis under the background of a new geomorphology research paradigm and earth observation technology.A theoretical framework for value-added DEM that mainly includes concept,connotation,content,and categories,is constructed in this study.The relationship between different types of value-added DEMs as well as the research significance and application category of this theoretical framework are also proposed.The following are different methods of value-added DEMs:(1)value-added methods of DEM space and time dimensions that emphasize the integration of the ground and underground as well as coupling of time and space,(2)attribute-based value-added methods composed of material(including underground,surface,and ground)and morphological properties,and(3)value-added methods of features and physical elements that consider geographical objects and landform features formed by natural processes and artificial effects.The digital terrace,slope,and watershed models are used as examples to illustrate application scenarios of the three kinds of value-added methods.This study aims to improve expression methods of DEMs under the background of new surveying and mapping technologies by adding value to the DEM at three levels of dimensions,attributes,and elements as well as support knowledge-driven digital geomorphological analysis in the era of big data.