Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian...Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.展开更多
The Er-single-doped and Er/Ce-codoped La3Ga5SiO14 polycrystalline powders are synthesized by the solid-phase synthesis method. The room-temperature luminescence spectra of the samples are investigated. The Near-infrar...The Er-single-doped and Er/Ce-codoped La3Ga5SiO14 polycrystalline powders are synthesized by the solid-phase synthesis method. The room-temperature luminescence spectra of the samples are investigated. The Near-infrared- region spectroscopic properties of Er3+ ions in the La3GasSiO14 systems are analysed with Judd-Ofelt theory and rate equations. The effective deactivating effect of Ce3+ ions on Er3+ ions is confirmed.展开更多
文摘Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.
基金supported by the National Natural Science Foundation of China (Grant Nos.61178056 and 60938001)the Hundred Talents Project of the Chinese Academy of Sciences
文摘The Er-single-doped and Er/Ce-codoped La3Ga5SiO14 polycrystalline powders are synthesized by the solid-phase synthesis method. The room-temperature luminescence spectra of the samples are investigated. The Near-infrared- region spectroscopic properties of Er3+ ions in the La3GasSiO14 systems are analysed with Judd-Ofelt theory and rate equations. The effective deactivating effect of Ce3+ ions on Er3+ ions is confirmed.