Characterization of hot deformation behavior of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was investigated through isothermal compression at various temperatures from 750 to 1050℃and strain rate from 0.01 to 10 s^(-1).The...Characterization of hot deformation behavior of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was investigated through isothermal compression at various temperatures from 750 to 1050℃and strain rate from 0.01 to 10 s^(-1).The isothermal compression experiment results showed that the peak stress of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy decreased with the temperature increasing and the strain rate decreasing.The softening mechanism was dynamic recovery below T_(β)and changed to dynamic recrystallization above T_(β).The arrheniustype relationship was used to calculate the constitutive equation of Ti-6Al-4V-0.5Ni-0.5Nb alloy in two-phase regions.It was found that the apparent activation energies were 427.095 kJ·mol^(-1)in theα+βphase region and 205.451 kJ·mol^(-1)in theβphase region,respectively.On the basis of dynamic materials model,the processing map is generated,which shows that the highest peak efficiency of power dissipation of 56%occurs at about 1050℃/0.01 s^(-1).It can be found in the processing maps that the strain had significant effect on the peak region of power dissipation efficiency of Ti-6Al-4V-0.5Ni-0.5Nb alloy.Furthermore,optimized hot working regions were investigated and validated through microstructure observation.The optimum thermo mechanical process condition for hot working of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was suggested to be in the temperature range of 950-1000℃with a strain rate of 0.01-0.1 s^(-1).展开更多
基金Funded by the National Key R&D Program of China(Nos.2021YFB3700804,2021YFB3700803)Shaanxi Provincial Innovation Capability Support Plan(No.2023KJXX-091)。
文摘Characterization of hot deformation behavior of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was investigated through isothermal compression at various temperatures from 750 to 1050℃and strain rate from 0.01 to 10 s^(-1).The isothermal compression experiment results showed that the peak stress of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy decreased with the temperature increasing and the strain rate decreasing.The softening mechanism was dynamic recovery below T_(β)and changed to dynamic recrystallization above T_(β).The arrheniustype relationship was used to calculate the constitutive equation of Ti-6Al-4V-0.5Ni-0.5Nb alloy in two-phase regions.It was found that the apparent activation energies were 427.095 kJ·mol^(-1)in theα+βphase region and 205.451 kJ·mol^(-1)in theβphase region,respectively.On the basis of dynamic materials model,the processing map is generated,which shows that the highest peak efficiency of power dissipation of 56%occurs at about 1050℃/0.01 s^(-1).It can be found in the processing maps that the strain had significant effect on the peak region of power dissipation efficiency of Ti-6Al-4V-0.5Ni-0.5Nb alloy.Furthermore,optimized hot working regions were investigated and validated through microstructure observation.The optimum thermo mechanical process condition for hot working of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was suggested to be in the temperature range of 950-1000℃with a strain rate of 0.01-0.1 s^(-1).