A facile method is presented for preparing TiO2/reduced graphite oxide (RGO) nanocomposites with phase-controlled TiO2 nanoparticles via redox reaction between the reductive titanium (III) precursor and graphite o...A facile method is presented for preparing TiO2/reduced graphite oxide (RGO) nanocomposites with phase-controlled TiO2 nanoparticles via redox reaction between the reductive titanium (III) precursor and graphite oxide (GO), and a series of TiO2/RGO composites with various TiO2 phase compositions were obtained. In all the titania/RGO composites, the TiO2 nanoparticles were uniformly distributed on the surface of the RGO. The TiO2 consisted of anatase phase particles in the form of square-plates with edges less than 10 nm and the rutile phase nanorods in diameters less than 10 nm. The performances of the as-prepared TiO2/RGO composites were investigated on catalytically degrading phenol under visible light irradiation. The TiO2/RGO composites can effectively degrade phenol under visible light irradiation, and the phase composition of TiO2 in the composites significantly influences the activities of these catalysts.展开更多
基金supported by the National Natural Science Foundation of China (20903105,21073202)the Ministry of Science and Technology of China (973 project,2009CB930802)the Chinese Academy of Sciences (KJCX2.YW.H16)
文摘A facile method is presented for preparing TiO2/reduced graphite oxide (RGO) nanocomposites with phase-controlled TiO2 nanoparticles via redox reaction between the reductive titanium (III) precursor and graphite oxide (GO), and a series of TiO2/RGO composites with various TiO2 phase compositions were obtained. In all the titania/RGO composites, the TiO2 nanoparticles were uniformly distributed on the surface of the RGO. The TiO2 consisted of anatase phase particles in the form of square-plates with edges less than 10 nm and the rutile phase nanorods in diameters less than 10 nm. The performances of the as-prepared TiO2/RGO composites were investigated on catalytically degrading phenol under visible light irradiation. The TiO2/RGO composites can effectively degrade phenol under visible light irradiation, and the phase composition of TiO2 in the composites significantly influences the activities of these catalysts.