This paper investigates the tradeoff between energy-efficiency capacity and spectrum sensing under hybrid spectrum sharing model, where the spectrum sharing method is based on sensing results of secondary user (SU)....This paper investigates the tradeoff between energy-efficiency capacity and spectrum sensing under hybrid spectrum sharing model, where the spectrum sharing method is based on sensing results of secondary user (SU). The metric 'bits per joule', which captures the effect of energy overhead in spectrum sensing, is adopted to evaluate energy-efficiency capacity. We first formulize the tradeoff between energy-efficiency capacity and spectrum sensing as an optimization problem with mixture constraint of sensing time and detection threshold. Under some certain condition on the domain of detection threshold, i.e. in which we can't improve energy-efficiency capacity through increasing the detection probability, the original optimization problem can be reduced to a new unconstrained one, which only relates to sensing time. Then the existence and uniqueness of optimal sensing time to achieve maximum energy-efficiency capacity are discussed and a low-complexity algorithm is proposed to obtain the optimal solution. Finally, numerical simulation is performed to verify the theoretical analysis results. The simulation results indicate that hybrid spectrum sharing is remarkably beneficial to energy-efficient transmission in cognitive radio networks (CRN). And the proposed algorithm can quickly converge to the optimal solution.展开更多
基金supported by the National Basic Research Program of China (2009CB320401)the National Key Scientific and Technological Project of China (2012ZX03004005-002)+1 种基金the Fundamental Research Funds for the Central Universities BUPT2011RCZJ018Research Funds of Doctoral Program of Higher Education of China (20090005110003)
文摘This paper investigates the tradeoff between energy-efficiency capacity and spectrum sensing under hybrid spectrum sharing model, where the spectrum sharing method is based on sensing results of secondary user (SU). The metric 'bits per joule', which captures the effect of energy overhead in spectrum sensing, is adopted to evaluate energy-efficiency capacity. We first formulize the tradeoff between energy-efficiency capacity and spectrum sensing as an optimization problem with mixture constraint of sensing time and detection threshold. Under some certain condition on the domain of detection threshold, i.e. in which we can't improve energy-efficiency capacity through increasing the detection probability, the original optimization problem can be reduced to a new unconstrained one, which only relates to sensing time. Then the existence and uniqueness of optimal sensing time to achieve maximum energy-efficiency capacity are discussed and a low-complexity algorithm is proposed to obtain the optimal solution. Finally, numerical simulation is performed to verify the theoretical analysis results. The simulation results indicate that hybrid spectrum sharing is remarkably beneficial to energy-efficient transmission in cognitive radio networks (CRN). And the proposed algorithm can quickly converge to the optimal solution.