In this paper,we propose a novel approach to visualizing global geographical information:a panoramic sphere in an immersive environment.The whole geographical surface can be observed through the rotating of heads as t...In this paper,we propose a novel approach to visualizing global geographical information:a panoramic sphere in an immersive environment.The whole geographical surface can be observed through the rotating of heads as the viewpoint of the panoramic sphere is inside the sphere.We compared three approaches to visualizing the earth for rendering the geographical information in a virtual reality environment.On the tasks of terrestrial and marine geographical information,we compare the visualization effects on a)a globe,b)a flat map and c)a panoramic sphere.Terrestrial geographical information tasks include the area comparison and direction determination.Marine geographical information tasks contain the visualization of sea surface temperature and sea surface currents.For terrestrial geographical information tasks,the experimental results show that the panoramic sphere outperforms the globe and the flat map,with a higher average accuracy and a shorter time.On marine geographical information task,the panoramic sphere visualization is also superior to the flat map and the globe in an immersive environment for the sea surface temperature data and the sea surface current fields.In all three visualization experiments,the panoramic sphere is most preferred by the participants,particularly for global,transcontinental and transoceanic needs.展开更多
Abstract A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton,...Abstract A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle, etc., which have different contributionsto absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We estab- lish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model's outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the re- flection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.展开更多
In this study,a 3D virtual reality and visualization engine for rendering the ocean,named VV-Ocean,is designed for marine applications.The design goals of VV-Ocean aim at high fidelity simulation of ocean environment,...In this study,a 3D virtual reality and visualization engine for rendering the ocean,named VV-Ocean,is designed for marine applications.The design goals of VV-Ocean aim at high fidelity simulation of ocean environment,visualization of massive and multidimensional marine data,and imitation of marine lives.VV-Ocean is composed of five modules,i.e.memory management module,resources management module,scene management module,rendering process management module and interaction management module.There are three core functions in VV-Ocean:reconstructing vivid virtual ocean scenes,visualizing real data dynamically in real time,imitating and simulating marine lives intuitively.Based on VV-Ocean,we establish a sea-land integration platform which can reproduce drifting and diffusion processes of oil spilling from sea bottom to surface.Environment factors such as ocean current and wind field have been considered in this simulation.On this platform oil spilling process can be abstracted as movements of abundant oil particles.The result shows that oil particles blend with water well and the platform meets the requirement for real-time and interactive rendering.VV-Ocean can be widely used in ocean applications such as demonstrating marine operations,facilitating maritime communications,developing ocean games,reducing marine hazards,forecasting the weather over oceans,serving marine tourism,and so on.Finally,further technological improvements of VV-Ocean are discussed.展开更多
In this article,the progress of marine geographic information system(MGIS) in China during 2006?2010 is reviewed with emphases on generic MGIS,advanced MGIS and MGIS-based applications.Generic MGIS can be divided into...In this article,the progress of marine geographic information system(MGIS) in China during 2006?2010 is reviewed with emphases on generic MGIS,advanced MGIS and MGIS-based applications.Generic MGIS can be divided into two categories:data-oriented MGIS and user-oriented MGIS,recent achievements of which by Chinese researchers are summarized respectively.Advanced MGIS mainly involves the establishment of 3D virtual marine environment and 'Digital Ocean'.An overview of the 3D MGIS based simulations in the context of ocean phenomena,ocean engineering and ocean battlefield is also presented.Several sug-gestions for future development of MGIS in China are proposed,and trends of development are addressed.展开更多
The study of marine data visualization is of great value. Marine data, due to its large scale, random variation and multiresolution in nature, are hard to be visualized and analyzed. Nowadays, constructing an ocean mo...The study of marine data visualization is of great value. Marine data, due to its large scale, random variation and multiresolution in nature, are hard to be visualized and analyzed. Nowadays, constructing an ocean model and visualizing model results have become some of the most important research topics of ‘Digital Ocean'. In this paper, a spherical ray casting method is developed to improve the traditional ray-casting algorithm and to make efficient use of GPUs. Aiming at the ocean current data, a 3D view-dependent line integral convolution method is used, in which the spatial frequency is adapted according to the distance from a camera. The study is based on a 3D virtual reality and visualization engine, namely the VV-Ocean. Some interactive operations are also provided to highlight the interesting structures and the characteristics of volumetric data. Finally, the marine data gathered in the East China Sea are displayed and analyzed. The results show that the method meets the requirements of real-time and interactive rendering.展开更多
Chemical vapor deposition zinc sulfide (CVD ZnS) is widely used as an infrared window material to transmit infrared signals, keep the aerodynamic shape and protect its imaging system, which often suffers high temper...Chemical vapor deposition zinc sulfide (CVD ZnS) is widely used as an infrared window material to transmit infrared signals, keep the aerodynamic shape and protect its imaging system, which often suffers high temperature and complicated thermal stresses. The purpose of this paper is to investigate the thermal shock damage of CVD ZnS through a finite element method and oxygen propane flame experiments. The finite element model is developed to simulate the temperature and thermal stress fields by an oxygen propane flame. Then, the thermal shock experiments are performed to investigate the thermal shock damage behavior. The results show that the temperature rising rate of the shock surface is fast during the initial heating stage resulting in high thermal stress. After the thermal shock experiment, the scanning electron microscope (SEM) photographs shows that the shock surface of the specimen becomes rough and the microcracks occur in the thermal shock zone. Good agreements are achieved between the numerical solutions and the experimental results.展开更多
基金This research was funded by the Science and Technology Innovation Project for Laoshan Laboratory(No.LSKJ202204303)the National Natural Science Foundation of China(No.42030406)+1 种基金the Fundamental Research Funds for the Central Universities(No.202261006)the ESANRSCC Scientific Cooperation Project on Earth Observation Science and Applications:Dragon 5(No.58393).
文摘In this paper,we propose a novel approach to visualizing global geographical information:a panoramic sphere in an immersive environment.The whole geographical surface can be observed through the rotating of heads as the viewpoint of the panoramic sphere is inside the sphere.We compared three approaches to visualizing the earth for rendering the geographical information in a virtual reality environment.On the tasks of terrestrial and marine geographical information,we compare the visualization effects on a)a globe,b)a flat map and c)a panoramic sphere.Terrestrial geographical information tasks include the area comparison and direction determination.Marine geographical information tasks contain the visualization of sea surface temperature and sea surface currents.For terrestrial geographical information tasks,the experimental results show that the panoramic sphere outperforms the globe and the flat map,with a higher average accuracy and a shorter time.On marine geographical information task,the panoramic sphere visualization is also superior to the flat map and the globe in an immersive environment for the sea surface temperature data and the sea surface current fields.In all three visualization experiments,the panoramic sphere is most preferred by the participants,particularly for global,transcontinental and transoceanic needs.
基金jointly supported by the International Cooperation and Exchange Projects of the National Natural Science Foundation of China (No.61361163001)the National Key Scientific Instrument and Equipment Development Projects of National Natural Science Foundation of China (No.41527901)the National High-Tech R&D Program (863 Program) (No.2013AA09A505)
文摘Abstract A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle, etc., which have different contributionsto absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We estab- lish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model's outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the re- flection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.
基金supported by the Global Change Research Program of China under Project 2012CB955603the Natural Science Foundation of China under Project 41076115+2 种基金the National Basic Research Program of China under Project 2009CB723903the Public Science and Technology Research Funds of the Ocean under Project 201005019the National High-Tech Research and Development Program of China under Project 2008AA121701
文摘In this study,a 3D virtual reality and visualization engine for rendering the ocean,named VV-Ocean,is designed for marine applications.The design goals of VV-Ocean aim at high fidelity simulation of ocean environment,visualization of massive and multidimensional marine data,and imitation of marine lives.VV-Ocean is composed of five modules,i.e.memory management module,resources management module,scene management module,rendering process management module and interaction management module.There are three core functions in VV-Ocean:reconstructing vivid virtual ocean scenes,visualizing real data dynamically in real time,imitating and simulating marine lives intuitively.Based on VV-Ocean,we establish a sea-land integration platform which can reproduce drifting and diffusion processes of oil spilling from sea bottom to surface.Environment factors such as ocean current and wind field have been considered in this simulation.On this platform oil spilling process can be abstracted as movements of abundant oil particles.The result shows that oil particles blend with water well and the platform meets the requirement for real-time and interactive rendering.VV-Ocean can be widely used in ocean applications such as demonstrating marine operations,facilitating maritime communications,developing ocean games,reducing marine hazards,forecasting the weather over oceans,serving marine tourism,and so on.Finally,further technological improvements of VV-Ocean are discussed.
基金supported by the Natural Science Foundation of China under projects 40730530 and 41076115the National Basic Research Program of China under project 2009CB723903the National High-Tech Research and Development Program of China under project 2008AA121701
文摘In this article,the progress of marine geographic information system(MGIS) in China during 2006?2010 is reviewed with emphases on generic MGIS,advanced MGIS and MGIS-based applications.Generic MGIS can be divided into two categories:data-oriented MGIS and user-oriented MGIS,recent achievements of which by Chinese researchers are summarized respectively.Advanced MGIS mainly involves the establishment of 3D virtual marine environment and 'Digital Ocean'.An overview of the 3D MGIS based simulations in the context of ocean phenomena,ocean engineering and ocean battlefield is also presented.Several sug-gestions for future development of MGIS in China are proposed,and trends of development are addressed.
基金supported by the Natural Science Foundation of China under Project 41076115the Global Change Research Program of China under project 2012CB955603the Public Science and Technology Research Funds of the Ocean under project 201005019
文摘The study of marine data visualization is of great value. Marine data, due to its large scale, random variation and multiresolution in nature, are hard to be visualized and analyzed. Nowadays, constructing an ocean model and visualizing model results have become some of the most important research topics of ‘Digital Ocean'. In this paper, a spherical ray casting method is developed to improve the traditional ray-casting algorithm and to make efficient use of GPUs. Aiming at the ocean current data, a 3D view-dependent line integral convolution method is used, in which the spatial frequency is adapted according to the distance from a camera. The study is based on a 3D virtual reality and visualization engine, namely the VV-Ocean. Some interactive operations are also provided to highlight the interesting structures and the characteristics of volumetric data. Finally, the marine data gathered in the East China Sea are displayed and analyzed. The results show that the method meets the requirements of real-time and interactive rendering.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 51121004)Doctoral Scientific Fund Project of the Ministry of Education of China (No. 20112302110036)the Fundamental Research Funds for the Central Universities of China (No. HIT.BRETIV.201315)
文摘Chemical vapor deposition zinc sulfide (CVD ZnS) is widely used as an infrared window material to transmit infrared signals, keep the aerodynamic shape and protect its imaging system, which often suffers high temperature and complicated thermal stresses. The purpose of this paper is to investigate the thermal shock damage of CVD ZnS through a finite element method and oxygen propane flame experiments. The finite element model is developed to simulate the temperature and thermal stress fields by an oxygen propane flame. Then, the thermal shock experiments are performed to investigate the thermal shock damage behavior. The results show that the temperature rising rate of the shock surface is fast during the initial heating stage resulting in high thermal stress. After the thermal shock experiment, the scanning electron microscope (SEM) photographs shows that the shock surface of the specimen becomes rough and the microcracks occur in the thermal shock zone. Good agreements are achieved between the numerical solutions and the experimental results.