Taking the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin as an example,the influences of the burial process in a foreland basin on the diagenesis and the development of high-quality res...Taking the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin as an example,the influences of the burial process in a foreland basin on the diagenesis and the development of high-quality reservoirs of deep and ultra-deep clastic rocks were investigated using thin section,scanning electron microscope,electron probe,stable isotopic composition and fluid inclusion data.The Qingshuihe Formation went through four burial stages of slow shallow burial,tectonic uplift,progressive deep burial and rapid deep burial successively.The stages of slow shallow burial and tectonic uplift not only can alleviate the mechanical compaction of grains,but also can maintain an open diagenetic system in the reservoirs for a long time,which promotes the dissolution of soluble components by meteoric freshwater and inhibits the precipitation of dissolution products in the reservoirs.The late rapid deep burial process contributed to the development of fluid overpressure,which effectively inhibits the destruction of primary pores by compaction and cementation.The fluid overpressure promotes the development of microfractures in the reservoir,which enhances the dissolution effect of organic acids.Based on the quantitative reconstruction of porosity evolution history,it is found that the long-term slow shallow burial and tectonic uplift processes make the greatest contribution to the development of deep-ultra-deep high-quality clastic rock reservoirs,followed by the late rapid deep burial process,and the progressive deep burial process has little contribution.展开更多
Currently, the differences in gravity flow deposits within different systems tracts in continental lacustrine basins are not clear. Taking the middle submember of the third member of Paleogene Shahejie Formation(Sha 3...Currently, the differences in gravity flow deposits within different systems tracts in continental lacustrine basins are not clear. Taking the middle submember of the third member of Paleogene Shahejie Formation(Sha 3 Member) in the Shishen 100 area of the Dongying Sag in the Bohai Bay Basin as an example, the depositional architecture of sublacustrine fans during forced regression and the impact of the fourth-order base-level changes on their growth were investigated using cores, well logs and 3D seismic data. Sublacustrine fans were mainly caused by hyperpycnal flow during the fourth-order base-level rise, while the proportion of slump-induced sublacustrine fans gradually increased during the late fourth-order base-level fall. From rising to falling of the fourth-order base-level, the extension distance of channels inside hyperpycnal-fed sublacustrine fans reduced progressively, resulting in the transformation in their morphology from a significantly channelized fan to a skirt-like fan. Furthermore, the depositional architecture of distributary channel complexes in sublacustrine fans changed from vertical aggradation to lateral migration, and the lateral size of individual channel steadily decreased. The lobe complex's architectural patterns evolved from compensational stacking of lateral migration to aggradational stacking, and the lateral size of individual lobe steadily grew. This study deepens the understanding of depositional features of gravity flow in high-frequency sequence stratigraphy and provides a geological foundation for the fine development of sublacustrine fan reservoirs.展开更多
基金Supported by the National Natural Science Foundation of China(41872113,42172109,42172108)CNPC-China University of Petroleum(Beijing)Strategic Cooperation Project(ZLZX2020-02)+1 种基金National Key R&D Program Project(2018YFA0702405)China University of Petroleum(Beijing)Research Project(2462020BJRC002,2462020YXZZ020)。
文摘Taking the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin as an example,the influences of the burial process in a foreland basin on the diagenesis and the development of high-quality reservoirs of deep and ultra-deep clastic rocks were investigated using thin section,scanning electron microscope,electron probe,stable isotopic composition and fluid inclusion data.The Qingshuihe Formation went through four burial stages of slow shallow burial,tectonic uplift,progressive deep burial and rapid deep burial successively.The stages of slow shallow burial and tectonic uplift not only can alleviate the mechanical compaction of grains,but also can maintain an open diagenetic system in the reservoirs for a long time,which promotes the dissolution of soluble components by meteoric freshwater and inhibits the precipitation of dissolution products in the reservoirs.The late rapid deep burial process contributed to the development of fluid overpressure,which effectively inhibits the destruction of primary pores by compaction and cementation.The fluid overpressure promotes the development of microfractures in the reservoir,which enhances the dissolution effect of organic acids.Based on the quantitative reconstruction of porosity evolution history,it is found that the long-term slow shallow burial and tectonic uplift processes make the greatest contribution to the development of deep-ultra-deep high-quality clastic rock reservoirs,followed by the late rapid deep burial process,and the progressive deep burial process has little contribution.
基金Supported by the National Natural Science Foundation of China (41872113,42172109,42202170)CNPC–China University of Petroleum (Beijing) Strategic Cooperation Science and Technology Project (ZLZX2020-02)。
文摘Currently, the differences in gravity flow deposits within different systems tracts in continental lacustrine basins are not clear. Taking the middle submember of the third member of Paleogene Shahejie Formation(Sha 3 Member) in the Shishen 100 area of the Dongying Sag in the Bohai Bay Basin as an example, the depositional architecture of sublacustrine fans during forced regression and the impact of the fourth-order base-level changes on their growth were investigated using cores, well logs and 3D seismic data. Sublacustrine fans were mainly caused by hyperpycnal flow during the fourth-order base-level rise, while the proportion of slump-induced sublacustrine fans gradually increased during the late fourth-order base-level fall. From rising to falling of the fourth-order base-level, the extension distance of channels inside hyperpycnal-fed sublacustrine fans reduced progressively, resulting in the transformation in their morphology from a significantly channelized fan to a skirt-like fan. Furthermore, the depositional architecture of distributary channel complexes in sublacustrine fans changed from vertical aggradation to lateral migration, and the lateral size of individual channel steadily decreased. The lobe complex's architectural patterns evolved from compensational stacking of lateral migration to aggradational stacking, and the lateral size of individual lobe steadily grew. This study deepens the understanding of depositional features of gravity flow in high-frequency sequence stratigraphy and provides a geological foundation for the fine development of sublacustrine fan reservoirs.