This study aims to develop a damage-detection algorithm based on the electromagnetic wave properties inside a reinforced concrete structure.The proposed method involves employing two algorithms based on data measured ...This study aims to develop a damage-detection algorithm based on the electromagnetic wave properties inside a reinforced concrete structure.The proposed method involves employing two algorithms based on data measured using ground-penetrating radar—a common electromagnetic wave method in civil engineering.The possible defect area was identified based on the energy dissipated by the damage in the frequency-wavenumber domain,with the damage localized using the calculated relative permittivity of the measurements.The proposed method was verified through a finite difference time-domain-based numerical analysis and a testing slab with artificial damage.As a result of verification,the proposed method quickly identified the presence of damage inside the concrete,especially for honeycomb-like defects located at the top of the rebar.This study has practical significance in scanning structures over a large area more quickly than other non-destructive testing methods,such as ultrasonic methods.展开更多
Painting is done according to the artist’s style.The most representative of the style is the texture and shape of the brush stroke.Computer simulations allow the artist’s painting to be produced by taking this strok...Painting is done according to the artist’s style.The most representative of the style is the texture and shape of the brush stroke.Computer simulations allow the artist’s painting to be produced by taking this stroke and pasting it onto the image.This is called stroke-based rendering.The quality of the result depends on the number or quality of this stroke,since the stroke is taken to create the image.It is not easy to render using a large amount of information,as there is a limit to having a stroke scanned.In this work,we intend to produce rendering results using mass data that produces large amounts of strokes by expanding existing strokes through warping.Through this,we have produced results that have higher quality than conventional studies.Finally,we also compare the correlation between the amount of data and the results.展开更多
基金National Research Foundation of Korea(NRF)Funded by the Korean Government(MSIT)under Grant Nos.RS-2023-00210317 and 2021R1A4A3030117the Digital-Based Building Construction and Safety Supervision Technology Research Program Funded by the Ministry of Land,Infrastructure,and Transport of the Korean Government under Grant No.RS-2022-00143493the Korea Institute of Civil Engineering and Building Technology(KICT)of the Republic of Korea,Project under Grant No.2023-0097。
文摘This study aims to develop a damage-detection algorithm based on the electromagnetic wave properties inside a reinforced concrete structure.The proposed method involves employing two algorithms based on data measured using ground-penetrating radar—a common electromagnetic wave method in civil engineering.The possible defect area was identified based on the energy dissipated by the damage in the frequency-wavenumber domain,with the damage localized using the calculated relative permittivity of the measurements.The proposed method was verified through a finite difference time-domain-based numerical analysis and a testing slab with artificial damage.As a result of verification,the proposed method quickly identified the presence of damage inside the concrete,especially for honeycomb-like defects located at the top of the rebar.This study has practical significance in scanning structures over a large area more quickly than other non-destructive testing methods,such as ultrasonic methods.
基金This research was supported by the Chung-Ang University Research Scholarship Grants in 2017.
文摘Painting is done according to the artist’s style.The most representative of the style is the texture and shape of the brush stroke.Computer simulations allow the artist’s painting to be produced by taking this stroke and pasting it onto the image.This is called stroke-based rendering.The quality of the result depends on the number or quality of this stroke,since the stroke is taken to create the image.It is not easy to render using a large amount of information,as there is a limit to having a stroke scanned.In this work,we intend to produce rendering results using mass data that produces large amounts of strokes by expanding existing strokes through warping.Through this,we have produced results that have higher quality than conventional studies.Finally,we also compare the correlation between the amount of data and the results.