Many experiments have been conducted on accidents and transients of pressurized water reactor (PWR) employing the rig of safety assessment/large-scale test facility (ROSA/LSTF). Recent research activities concerned wi...Many experiments have been conducted on accidents and transients of pressurized water reactor (PWR) employing the rig of safety assessment/large-scale test facility (ROSA/LSTF). Recent research activities concerned with the OECD/NEA international joint projects included experimental investigation via the ROSA and ROSA-2 Projects, and counterpart testing with thermal-hydraulic integral test facilities under collaboration of the PKL-2, PKL-3, ATLAS, and ATLAS-2 Projects. Major results of the related integral effect tests (IETs) with the LSTF were reviewed to experimentally identify thermal-hydraulic phenomena involved, regarding the PWR accident sequences in accordance with the new regulatory requirements for the Japanese light-water nuclear power plants. Future separate effect test using the LSTF is planned to simulate loss of emergency core cooling system (ECCS) recirculation functions in a large-break loss-of-coolant accident (LOCA). Key results of the recent IETs utilizing the LSTF and future plans were presented relevant to multiple steam generator tube rupture accident with recovery operation, small-break LOCA with accident management measure on core exit temperature reliability, and small-break LOCA with thermal stratification under cold water injection from ECCS into cold legs. Also, main outcomes of the LSTF IETs were indicated for wide spectrum LOCA with core uncovery and anticipated transient without scram following small-break LOCA under totally failed high-pressure injection system.展开更多
RELAP5 (reactor excursion and leak analysis program, version 5) code analyses were performed on two ROSA/LSTF (rig of safety assessment/large scale test facility) experiments on PWR (pressurized water reactor) s...RELAP5 (reactor excursion and leak analysis program, version 5) code analyses were performed on two ROSA/LSTF (rig of safety assessment/large scale test facility) experiments on PWR (pressurized water reactor) safety system that simulated cold leg small-break loss-of-coolant accidents with 8-in. or 4-in. diameter break using SG (steam generator) secondary-side depressurization. The SG depressurization was initiated by fully opening the depressurization valves in both SGs immediately after a safety injection signal. In the 8-in. break test, loop seal clearing occurred and then core uncovery and heatup took place by core boil-off. Core collapsed liquid level recovered after the initiation of accumulator coolant injection, and long-term core cooling was ensured by the actuation of low-pressure injection system. In the 4-in. break test, on the other hand, there was no core uncovery and heatup due to smaller break flow rate than in the 8-in. break test. Adjustment of Cd (break discharge coefficient) for two-phase discharge flow predicted the break flow rate reasonably well. The code well predicted the overall trend of the major thermal-hydraulic response observed in the two LSTF tests by the Cd adjustment. The code, however, overpredicted the peak cladding temperature because of underprediction of the core collapsed liquid level due to inadequate prediction of the accumulator flow rate in the 8-in. break case.展开更多
文摘Many experiments have been conducted on accidents and transients of pressurized water reactor (PWR) employing the rig of safety assessment/large-scale test facility (ROSA/LSTF). Recent research activities concerned with the OECD/NEA international joint projects included experimental investigation via the ROSA and ROSA-2 Projects, and counterpart testing with thermal-hydraulic integral test facilities under collaboration of the PKL-2, PKL-3, ATLAS, and ATLAS-2 Projects. Major results of the related integral effect tests (IETs) with the LSTF were reviewed to experimentally identify thermal-hydraulic phenomena involved, regarding the PWR accident sequences in accordance with the new regulatory requirements for the Japanese light-water nuclear power plants. Future separate effect test using the LSTF is planned to simulate loss of emergency core cooling system (ECCS) recirculation functions in a large-break loss-of-coolant accident (LOCA). Key results of the recent IETs utilizing the LSTF and future plans were presented relevant to multiple steam generator tube rupture accident with recovery operation, small-break LOCA with accident management measure on core exit temperature reliability, and small-break LOCA with thermal stratification under cold water injection from ECCS into cold legs. Also, main outcomes of the LSTF IETs were indicated for wide spectrum LOCA with core uncovery and anticipated transient without scram following small-break LOCA under totally failed high-pressure injection system.
文摘RELAP5 (reactor excursion and leak analysis program, version 5) code analyses were performed on two ROSA/LSTF (rig of safety assessment/large scale test facility) experiments on PWR (pressurized water reactor) safety system that simulated cold leg small-break loss-of-coolant accidents with 8-in. or 4-in. diameter break using SG (steam generator) secondary-side depressurization. The SG depressurization was initiated by fully opening the depressurization valves in both SGs immediately after a safety injection signal. In the 8-in. break test, loop seal clearing occurred and then core uncovery and heatup took place by core boil-off. Core collapsed liquid level recovered after the initiation of accumulator coolant injection, and long-term core cooling was ensured by the actuation of low-pressure injection system. In the 4-in. break test, on the other hand, there was no core uncovery and heatup due to smaller break flow rate than in the 8-in. break test. Adjustment of Cd (break discharge coefficient) for two-phase discharge flow predicted the break flow rate reasonably well. The code well predicted the overall trend of the major thermal-hydraulic response observed in the two LSTF tests by the Cd adjustment. The code, however, overpredicted the peak cladding temperature because of underprediction of the core collapsed liquid level due to inadequate prediction of the accumulator flow rate in the 8-in. break case.