With respect to flows in a two-dimensional sudden expansion and contraction channel having a pair of cavities, numerical simulation was performed by imposing inlet/outlet boundary conditions giving a velocity distribu...With respect to flows in a two-dimensional sudden expansion and contraction channel having a pair of cavities, numerical simulation was performed by imposing inlet/outlet boundary conditions giving a velocity distribution to the inlet. Periodic flows have been reproduced, which have a discrete spectrum about frequency. A fundamental wave occupies most part of the disturbance components, but higher harmonic waves are also included. The disturbance is excited by Kelvin-Helmholtz instability in a cavity section, where only the fundamental wave is generated. A wavenumber is regulated by a channel length under a periodic boundary condition, but there is no restriction in a main flow direction under the inlet/outlet boundary conditions, and therefore, some wavenumbers can occur. Therefore, an arbitrary frequency component of disturbance is a synthesized wave composed of various wave numbers. There are two kinds of components constituting this synthesized wave: a maximum of a velocity distribution is near a wall and in the center of the channel, which are called as wall mode and central mode in linear stability analysis of the plane Poiseuille flow. The synthesized wave composed of some modes shows a tendency to lower wavenumbers at the center of the channel.展开更多
Chaotic mixing in eight different types of micro T-mixer flow has been studied experimentally and numerically. The present experimental study was performed to visualize two-liquid flows in a micro T-mixer with baffles...Chaotic mixing in eight different types of micro T-mixer flow has been studied experimentally and numerically. The present experimental study was performed to visualize two-liquid flows in a micro T-mixer with baffles. The Reynolds number, baffle height and setting angle were varied to investigate their effect on the mixing performance. Three micro T-mixer models were produced, which are several centimeters long and have a rectangular cross-section of few millimeters a side. The mixing of two-liquid was measured using the laser induced fluorescence (LIF) technique. Moreover, three-dimensional numerical simulations were conducted with the open-source CFD solver, OpenFOAM, for the same configuration as used in the experiments to investigate the detailed mechanism of the chaotic mixing. As a result, it was found that the mixing of two-liquid is greatly improved in the micro T-mixer with baffle. The baffle height and setting angle show a significant influence on the mixing performance.展开更多
文摘With respect to flows in a two-dimensional sudden expansion and contraction channel having a pair of cavities, numerical simulation was performed by imposing inlet/outlet boundary conditions giving a velocity distribution to the inlet. Periodic flows have been reproduced, which have a discrete spectrum about frequency. A fundamental wave occupies most part of the disturbance components, but higher harmonic waves are also included. The disturbance is excited by Kelvin-Helmholtz instability in a cavity section, where only the fundamental wave is generated. A wavenumber is regulated by a channel length under a periodic boundary condition, but there is no restriction in a main flow direction under the inlet/outlet boundary conditions, and therefore, some wavenumbers can occur. Therefore, an arbitrary frequency component of disturbance is a synthesized wave composed of various wave numbers. There are two kinds of components constituting this synthesized wave: a maximum of a velocity distribution is near a wall and in the center of the channel, which are called as wall mode and central mode in linear stability analysis of the plane Poiseuille flow. The synthesized wave composed of some modes shows a tendency to lower wavenumbers at the center of the channel.
文摘Chaotic mixing in eight different types of micro T-mixer flow has been studied experimentally and numerically. The present experimental study was performed to visualize two-liquid flows in a micro T-mixer with baffles. The Reynolds number, baffle height and setting angle were varied to investigate their effect on the mixing performance. Three micro T-mixer models were produced, which are several centimeters long and have a rectangular cross-section of few millimeters a side. The mixing of two-liquid was measured using the laser induced fluorescence (LIF) technique. Moreover, three-dimensional numerical simulations were conducted with the open-source CFD solver, OpenFOAM, for the same configuration as used in the experiments to investigate the detailed mechanism of the chaotic mixing. As a result, it was found that the mixing of two-liquid is greatly improved in the micro T-mixer with baffle. The baffle height and setting angle show a significant influence on the mixing performance.