在空中交通愈加拥挤的背景下,航空器的异常飞行行为的有效挖掘可以辅助管制员进行调配决策。现有方法只能辨识飞机空间位置特征异常,存在水平可扩展性的局限。本文考虑位置、速度、高度和航向4个异常特征,采用高度层划分策略、局部异常...在空中交通愈加拥挤的背景下,航空器的异常飞行行为的有效挖掘可以辅助管制员进行调配决策。现有方法只能辨识飞机空间位置特征异常,存在水平可扩展性的局限。本文考虑位置、速度、高度和航向4个异常特征,采用高度层划分策略、局部异常因子和快速覆盖树对基于密度的有噪声应用中的空间聚类(Density-based spatial clustering of applications with noise,DBSCAN)方法进行改进,提出局部异常因子改进的考虑速度、方向及高度的基于密度聚类方法(Density-based spatial clustering considering speed,direction and high level improved by local outlier factor,LOFDBSC-SDH)密度聚类算法对正常航迹模式进行快速准确提取。然后,基于正常航迹模式设计考虑过点时间和上述异常特征的航迹匹配算法,挖掘异常飞行行为。最后,通过实验仿真验证了本文方法的有效性和应用价值。展开更多
为了预测航空器滑行预计到达时间(Estimated time of arrival,ETA),减少场面冲突,提高机场运行效率,本文使用卡尔曼滤波算法对场面历史轨迹数据进行预处理。为了衡量轨迹样本间的距离,综合三类特征用于机场场面历史轨迹数据聚类。特征...为了预测航空器滑行预计到达时间(Estimated time of arrival,ETA),减少场面冲突,提高机场运行效率,本文使用卡尔曼滤波算法对场面历史轨迹数据进行预处理。为了衡量轨迹样本间的距离,综合三类特征用于机场场面历史轨迹数据聚类。特征包含航空器滑行时段和场面航空器数量,以及参考动态时间规整(Dynamic time warping,DTW)算法提取的轨迹差异度特征。将两个样本特征的欧式距离作为样本间的相似度量;基于均差最大原则确定初始聚类中心,使用K-means算法对样本进行聚类,根据待规划航空器的所处时段和场面航空器数量选择匹配度最高的类簇,将其聚类中心样本的轨迹序列和塔台规划的静态路径相结合预测航空器滑行ETA。通过将实际轨迹数据与预测的滑行ETA进行对比分析,证明了本文预测航空器滑行ETA的准确性。展开更多
文摘在空中交通愈加拥挤的背景下,航空器的异常飞行行为的有效挖掘可以辅助管制员进行调配决策。现有方法只能辨识飞机空间位置特征异常,存在水平可扩展性的局限。本文考虑位置、速度、高度和航向4个异常特征,采用高度层划分策略、局部异常因子和快速覆盖树对基于密度的有噪声应用中的空间聚类(Density-based spatial clustering of applications with noise,DBSCAN)方法进行改进,提出局部异常因子改进的考虑速度、方向及高度的基于密度聚类方法(Density-based spatial clustering considering speed,direction and high level improved by local outlier factor,LOFDBSC-SDH)密度聚类算法对正常航迹模式进行快速准确提取。然后,基于正常航迹模式设计考虑过点时间和上述异常特征的航迹匹配算法,挖掘异常飞行行为。最后,通过实验仿真验证了本文方法的有效性和应用价值。
文摘为了预测航空器滑行预计到达时间(Estimated time of arrival,ETA),减少场面冲突,提高机场运行效率,本文使用卡尔曼滤波算法对场面历史轨迹数据进行预处理。为了衡量轨迹样本间的距离,综合三类特征用于机场场面历史轨迹数据聚类。特征包含航空器滑行时段和场面航空器数量,以及参考动态时间规整(Dynamic time warping,DTW)算法提取的轨迹差异度特征。将两个样本特征的欧式距离作为样本间的相似度量;基于均差最大原则确定初始聚类中心,使用K-means算法对样本进行聚类,根据待规划航空器的所处时段和场面航空器数量选择匹配度最高的类簇,将其聚类中心样本的轨迹序列和塔台规划的静态路径相结合预测航空器滑行ETA。通过将实际轨迹数据与预测的滑行ETA进行对比分析,证明了本文预测航空器滑行ETA的准确性。