期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Evaluating Privacy Leakage and Memorization Attacks on Large Language Models (LLMs) in Generative AI Applications 被引量:1
1
作者 Harshvardhan Aditya Siddansh Chawla +6 位作者 Gunika Dhingra Parijat Rai Saumil Sood tanmay singh Zeba Mohsin Wase Arshdeep Bahga Vijay K. Madisetti 《Journal of Software Engineering and Applications》 2024年第5期421-447,共27页
The recent interest in the deployment of Generative AI applications that use large language models (LLMs) has brought to the forefront significant privacy concerns, notably the leakage of Personally Identifiable Infor... The recent interest in the deployment of Generative AI applications that use large language models (LLMs) has brought to the forefront significant privacy concerns, notably the leakage of Personally Identifiable Information (PII) and other confidential or protected information that may have been memorized during training, specifically during a fine-tuning or customization process. We describe different black-box attacks from potential adversaries and study their impact on the amount and type of information that may be recovered from commonly used and deployed LLMs. Our research investigates the relationship between PII leakage, memorization, and factors such as model size, architecture, and the nature of attacks employed. The study utilizes two broad categories of attacks: PII leakage-focused attacks (auto-completion and extraction attacks) and memorization-focused attacks (various membership inference attacks). The findings from these investigations are quantified using an array of evaluative metrics, providing a detailed understanding of LLM vulnerabilities and the effectiveness of different attacks. 展开更多
关键词 Large Language Models PII Leakage Privacy Memorization OVERFITTING Membership Inference Attack (MIA)
下载PDF
Whispered Tuning: Data Privacy Preservation in Fine-Tuning LLMs through Differential Privacy
2
作者 tanmay singh Harshvardhan Aditya +1 位作者 Vijay K. Madisetti Arshdeep Bahga 《Journal of Software Engineering and Applications》 2024年第1期1-22,共22页
The proliferation of Large Language Models (LLMs) across various sectors underscored the urgency of addressing potential privacy breaches. Vulnerabilities, such as prompt injection attacks and other adversarial tactic... The proliferation of Large Language Models (LLMs) across various sectors underscored the urgency of addressing potential privacy breaches. Vulnerabilities, such as prompt injection attacks and other adversarial tactics, could make these models inadvertently disclose their training data. Such disclosures could compromise personal identifiable information, posing significant privacy risks. In this paper, we proposed a novel multi-faceted approach called Whispered Tuning to address privacy leaks in large language models (LLMs). We integrated a PII redaction model, differential privacy techniques, and an output filter into the LLM fine-tuning process to enhance confidentiality. Additionally, we introduced novel ideas like the Epsilon Dial for adjustable privacy budgeting for differentiated Training Phases per data handler role. Through empirical validation, including attacks on non-private models, we demonstrated the robustness of our proposed solution SecureNLP in safeguarding privacy without compromising utility. This pioneering methodology significantly fortified LLMs against privacy infringements, enabling responsible adoption across sectors. 展开更多
关键词 NLP Differential Privacy Adversarial Attacks Informed Decisions
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部